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Abstract

The central role of physically derived nonlinear, time-dependent partial differential equations (PDEs)
in scientific and engineering research is undisputed, as is the need for numerical approaches to
understand their behaviour. The finite element method (FEM) has emerged as the foremost approach
to numerically solve PDEs, yet when discretised solutions are compared to empirical evidence,
elements of model mismatch are revealed that require coherent statistical formalisms which respect
the underlying governing equations, whilst also providing probabilistic quantification of uncertainties
induced by model mismatch. One such method is the recently developed statistical finite element method
(statFEM), initially studied in the context of static, linear PDEs. This thesis extends these developments
to the wider class of nonlinear, time-dependent PDEs in one and two dimensions and reports evidence
of the applicability of statFEM to systems of higher, and more realistic, model complexity.

We call our extension NL-statFEM, and the first contribution of this thesis is the derivation of this
methodology, which sequentially updates numerical solutions to nonlinear PDEs with data. Additive
Gaussian process forcing is added into the governing equations, taken to represent incomplete
knowledge of the physics. We take a Bayesian approach and leverage the finite element method to cast
the statistical problem as a nonlinear Gaussian state–space model, updating the solution, in receipt of
data, in a filtering framework. To compute the approximate Gaussian posterior, we use the extended
and ensemble Kalman filters.

NL-statFEM is applicable to problems across science and engineering for which finite element
methods are appropriate, and we demonstrate its application on canonical nonlinear PDEs. Results
with the Burgers, Kuramoto Sivashinsky and Korteweg-de Vries equations show that statFEM: (1)
corrects for model misspecification; (2) provides good approximations to the data generating process;
and (3) can leverage physical information to serve as an inferential regulariser in sparse observational
settings.

Although extending FEM to high-dimensional systems is computationally feasible, for NL-statFEM
a challenge still remains when dealing with such systems of increasing model complexity. The
second contribution of this thesis is, therefore, a scalable filtering procedure that melds a low-rank
covariance approximation with NL-statFEM. The posterior covariance matrix is represented through
its leading-order modes, giving an efficient filter that captures a majority of the variance. This low-rank
filter overcomes the computational burdens associated with filtering in high dimensions and enables
the application of NL-statFEM to high-dimensional problems that are typical in physical and industrial
contexts. Demonstrated on a series of reaction-diffusion problems of increasing dimension, using
experimental and simulated data, the method reconstructs the sparsely observed data-generating
processes with minimal loss of information, in both posterior mean and the variance.
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Chapter 1

Introduction

Scientific theories are described through mathematical models, which encode knowledge of the system
under study through a set of relations between state variables. These relations synthesise prior
knowledge into some mathematical form and detail expected behaviours of the system — for example,
conservation, dissipation, and/or nonlinearity. However, demonstrating such scientific theories to be
true is impossible (Popper, 1959): at best a mathematical model can be verified against data in certain
configurations, demonstrating correctness on finitely many specific cases. There exists an asymmetry
in the weight of the evidence: if a single observation, or set of observations, is able to show that the
theory does not hold, then it has been falsified. Due to this asymmetry it is difficult to discuss models
as perfectly capturing the true data generating process. This is captured in the well-known statisical
aphorism “all models are wrong, but some are useful”, attributed to Box (1979).

Since mathematical models are imperfect, discrepancies are observed in the comparison of the
model outputs to measurements. Elements of model mismatch may result from a variety of sources:
there may be a missing model subspace (Judd and Smith, 2004), or a mismatch in model state (e.g.
discrete vs continuum states) (Berger and Smith, 2019). The model may also be never truly closed,
requiring the specification of incompletely known parameters, or certain physics may be deliberately
ignored for computational feasibility (Oreskes et al., 1994).

To deal with model discrepancies, statistical protocols are required and in this thesis we take a
Bayesian approach to the inference procedure. We do so because (1) Bayesian approaches provide
probabilistically coherent uncertainty quantification (UQ); and (2) they allow for the online updating
of parameter estimates as more data becomes available. As the main setting of this thesis is within
nonlinear, time-dependent PDEs, where data arrives sequentially, the capability of online updating
is particularly useful. We develop a Bayesian statistical methodology that combines ideas from the
inversion and data assimilation literatures and embeds itself within finite element modelling. More
specifically, we introduce function-valued uncertainty with the forcing inside the governing PDE,
as in inversion. This uncertainty is taken to represent epistemic model imperfection. However,
instead of estimating this forcing, we leverage it to describe a state-space model via finite element
discretisation. Numerical solutions are then updated in a filtering context, as in the field of data
assimilation. Therefore, to set the scene for this work, we provide an overview of the inverse and data
assimilation problems.

1



Chapter 1. Introduction

1.1 Inversion

The goal of the inverse problem is to estimate, or infer, model parameters from data, after they have been
pushed through some forward model (Tarantola, 2005). The forward model is a possibly nonlinear
mapping of the model parameters, commonly given by the solution operator of an ordinary or partial
differential equation (ODE or PDE, respectively). Parameters are estimated through the minimisation
of some cost function: a classical approach uses the squared Euclidean distance, ‖·‖22, between the
model predictions and the data. Denote byM(x; Λ) the model with finite-dimensional parameters Λ

and fixed inputs x. For measurements y = (y1, . . . , yn) the inverse problem is to estimate the Λ∗ such
that

Λ∗ = argmin
Λ

{
1

2
‖y −M(x; Λ)‖22 +

1

2γ2
‖Λ‖22

}
. (1.1)

The addition of a regularisation term avoids ill-conditioning, as typically Λ is of higher dimensionality
than y (for example, Λ is commonly a function, an infinite-dimensional object).

Due to model nonlinearity, the optimisation problem of (1.1) may be nonconvex and possibly
poorly conditioned. Therefore scalable gradient-based optimisation schemes are required to estimate
Λ∗, such as gradient descent or quasi-Newton schemes (Boyd and Vandenberghe, 2004; Nocedal and
Wright, 2006). Gradients can be computed using either the adjoint sensitivity method (Plessix, 2006)
and/or automatic differentiation (Baydin et al., 2018; Farrell et al., 2013).

The problem as formulated above is deterministic and does not introduce any notion of uncertainty.
Uncertainties may arise due to observing noisy measurements of the system state, with a data
generating process such as

y =M(x; Λ) + η, η ∼ N (0, σ2I). (1.2)

Thus the inverse problem can be cast as one of statistical inference, formulated in terms of the likelihood
function p(y | Λ), instead of the cost function (Abramovich and Ritov, 2013). The likelihood is the
corresponding joint probability density function of the data, y, given Λ; the inference problem is
to determine Λ from the data. In this case, p(y |Λ) = N (M(x; Λ), σ2I). If we assume that, a priori,
our knowledge about Λ is represented by a prior distribution p(Λ), we can combine this with the
likelihood, using Bayes theorem, to give the posterior distribution

p(Λ | y) ∝ p(y |Λ)p(Λ).

The choice of the prior may be weakly or strongly informative, depending on the modelling scenario,
and may also be expert elicited (see, e.g., Oakley and O’Hagan, 2007). Often a Gaussian prior is used, as,
in the infinite dimensional context, only Gaussian measure provides an adequate reference measure in
the function space (Da Prato and Zabczyk, 2014).

For the finite-dimensional case, with densities taken with respect to Lebesgue measure, combining
a mean-zero Gaussian prior with the Gaussian likelihood gives the same negative log-posterior density
as the cost function of (1.1)1. Solving the Bayesian inverse problem involves estimating the posterior
distribution p(Λ | y), providing a complete characterisation of the uncertainty associated with Λ

1In (1.1) this requires setting σ = 1 and, for the prior, specifying Λ ∼ N (0, γ2I). The negative log-posterior density is
also called the potential function in physics, giving rise to a Gibbs measure. These measures also arise in the energy based
models community, in machine learning (LeCun et al., 2006).
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1.1. Inversion

conditioned on model assumptions.
However, estimating the posterior distribution is challenging as it is commonly known only up

to a normalising constant. Variables of interest are also likely to be high-dimensional, and model
nonlinearities will also complicate estimation: the resulting posterior may be possibly multimodal
or poorly-conditioned. A standard estimation methodology is Markov Chain Monte Carlo (MCMC)
sampling (Casella and George, 1992; Chib and Greenberg, 1995; Tierney, 1994). MCMC constructs a
Markov Chain whose stationary distribution is the posterior distribution of interest. TheMetropolis-
Hastings condition (Hastings, 1970; Metropolis et al., 1953) is used to construct the transition kernel,
in combination with a requisite proposal distribution. Popular MCMC algorithms for inverse
problems include the preconditioned Crank-Nicolson (Cotter et al., 2013), the stochastic Newton
algorithm (Martin et al., 2012), and multilevel MCMC (Dodwell et al., 2015).

However, even under optimal model parameters there may still be structural problems that result
in mismatch. To deal with this problem, the framework of Bayesian inversion was generalised in the
seminal paper of Kennedy and O’Hagan (2001). In this structural model imperfections are dealt with
via an additive Gaussian Process (GP). The GP is a continuous random process which places a prior
distribution over an appropriate space of functions. Upon receipt of data, this prior is updated to give
a posterior distribution (Williams and Rasmussen, 2006). The GP , in this case, is assumed to capture
additive smooth model error that arises from model inadequacy that is statistically independent from
the model itself. This functional model error is typically assumed to be smooth. Such a framework
posits the data generating process of

y = ρM(x; Λ) + ξ(x) + η, (1.3)

where, borrowing the notation of the model introduced above, ρ ∈ R, ξ(x) ∼ GP(m(x), k(x,x′)),
η ∼ N (0,R). The GP , ξ, is completely specified by its mean function m(x) and covariance function
k(x,x′). The mean function defines how we expect GP sample paths to behave on average and the
covariance function describes the properties of these sample paths (e.g, smoothness). For more details
see Chapter 2, Sections 2.3.2 and 2.3.3, of this thesis. The data are thus generated according to a scaled
version of the model, plus a functional error term, and observational noise.

The goal of the Kennedy-O’Hagan framework is to estimate the joint posterior distribution over all
parameters in the above (model parameters, GP mean parameters, GP covariance hyperparameters,
noise parameters). This jointly quantifies the uncertainty associated with all unknown parameters and
provides an approximation to the true data generating process, given by ρM(x; Λ) + ξ(x). However,
the model parameters Λ and model error ξ(x), as formulated in (1.3), are not identifiable (Bayarri et al.,
2007a,b). Estimating the posterior also inherits the same difficulties as the Bayesian inverse problem
as it will typically be known only up to a normalising constant, and may be multimodal and poorly
conditioned. Nevertheless, the framework has been widely adopted within the Bayesian statistics
literature (Goldstein and Rougier, 2006; Higdon et al., 2004, 2008; Plumlee et al., 2016), and there has
been some work done on rectifying the identifiability problem (Plumlee, 2017; Tuo and Wu, 2015).

3
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1.2 Data Assimilation

Data Assimilation (DA) can be considered a special case of the inverse problem, in which the goal is to
infer the underlying data generating process given noisy, subsampled measurements of a temporally-
evolving system (Law et al., 2015). For model parameters Λ (now taken as fixed), an example DA
model is, for the time index n = 1, . . .

un = F(un−1; Λ) + qn, qn ∼ N (0,Q),

yn = Hun + rn, rn ∼ N (0,R).
(1.4)

The object of interest is the posterior distribution p(un | y1:n,Λ), where y1:n = (y1, . . . ,yn). For linear
F(·; Λ) this distribution is Gaussian, p(un |y1:n,Λ) = N (mn,Cn), and can be estimated by the Kalman
filter (Kalman, 1960).

The nonlinear Bayesianfilteringproblem requires two steps: marginalisation andupdating. Assuming
that p(un−1 | y1:n−1,Λ) is known, the marginalisation step first integrates over the uncertainty in
the previous timestep, computing p(un | y1:n−1,Λ) =

∫
p(un | un−1,Λ) p( dun−1 | y1:n−1,Λ). This

distribution forms the prior for the data observed at the current timestep, so the posterior, up
to a normalising constant, is p(un | y1:n,Λ) ∝ p(yn | un)p(un | y1:n−1,Λ). Exact computation of
p(un | y1:n,Λ) is difficult due to the high dimensionality of un and the nonlinearity of F(·; Λ). The
efficient approximation of this posterior distribution is the focus of the DA literature.

The approximate Gaussian filters are methods to estimate this posterior in an online fashion: two
common examples are the extended and ensemble Kalman filters (ExKF and EnKF, respectively),
which each recursively compute the approximation p(un | y1:n,Λ) ≈ N (mn,Cn). The ExKF linearises
about the current timestep to compute a first-order Gaussian approximation p(un | y1:n−1,Λ), and
uses the Gaussian update to give p(un | y1:n,Λ). The EnKF constructs a Monte Carlo approximation
to p(un | y1:n−1,Λ) through a set of particles or ensemble members, and assumes that this ensemble has
a Gaussian distribution. Each ensemble member is updated with the standard Gaussian update. A
similar non-Gaussian approach is the particle filter (Doucet et al., 2000), which may struggle in high
dimensions due to weight degeneracy (Bengtsson et al., 2008). Therefore, we focus on the approximate
Gaussian filters only. These approaches can be added on top of existing finite element libraries whilst
also providing reasonable estimates of the posterior distribution of interest (Law and Stuart, 2012).
Computational scalability is also ensured through making a low-rank approximation in the ExKF case,
and, through utilising small numbers of particles (relative to the state dimension) in the EnKF case.

1.3 Related work, contributions, and outline

Recently, there has been a trend toward combining statistical learning and physics, with these methods
coined physics-informed learning (Karniadakis et al., 2021). Physical knowledge is incorporated into the
inference procedure, enabling data-efficient learning in possibly sparse observational settings, where
classical deep/machine learning approaches may fail. The methodology we develop in this thesis can
be thought of as a physics-informed online regression methodology, and adds to this literature. Thus
we include a brief review of these works to establish our contribution.
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A popular example is the SINDy algorithm (Brunton et al., 2016), which uses sparse regression
to identify ODE systems from noisy time series measurements. This builds upon placing a sparsity-
enforcing regularisation term when determining the ODE from a library of candidate functions. This
is extended to the PDE setting in Rudy et al. (2017), which addresses system identification from
spatio-temporal measurements inside the problem domain.

Neural network (NN) approaches are common. Apopularmethod is tomodel the PDEvariablewith
an NN, setting u(x, t) = NNθ(x, t), for x ∈ Rd, t ∈ R+. Termed physics-informed neural networks (Raissi
et al., 2019), the cost function includes terms for the PDE dynamics, the initial conditions, and the
boundary conditions; physics regularisation ensures the NN is data-efficient. NNs can also be used for
system identification (Long et al., 2018), and also for estimating optimal discretisations from data (Bar-
Sinai et al., 2019). A latent dynamical model can alternatively be used to facilitate continuous-depth
NNs (Chen et al., 2018), allowing for temporal dependencies in NN models. Universal differential
equations (UDEs) (Rackauckas et al., 2021) provide a generic formalism that incorporates universal
approximators (of which NNs are an example of) into differential equations. These allow for the
combination of NN methodology whilst also being able to leverage classical numerical schemes.
Adjacent to the direct inclusion of NNs in physical models are neural operators, which construct
solution operators to differential equation from NNs (Kovachki et al., 2021; Li et al., 2020).

Gaussian processes can be used in a similar fashion. In Raissi and Karniadakis (2018), a GP prior is
placed over the PDE variable so that the covariance function encodes the a priori specified physical laws.
This allows for system identification through transforming PDE coefficients into GP hyperparameters,
whose estimation is well-studied (see, e.g., Williams and Rasmussen, 2006).

Probabilistic numerical methods (Hennig et al., 2015) casts standard tasks in computational math-
ematics as inference problems, for example, evaluating integrals (Briol et al., 2019), solving linear
systems (Cockayne et al., 2019), and solving differential equations (Cockayne et al., 2017). The
associated uncertainty quantifies discretisation error from the numerical method and can be included
in the computational pipeline when estimating quantities of interest. This provides complete UQ
which considers known parametric and numerical sources of uncertainty.

The main contribution of this thesis is the development of a novel statistical methodology to adjust
for model misspecification in nonlinear, time-dependent PDEs; the methodology uses a combination
of ideas from both Bayesian inversion and data assimilation, and lies within the physics-informed
learning literature. A GP is stipulated that encodes our a priori belief in the model parameters Λ.
We do not try and solve the system identification problem (as in, e.g., Rudy et al., 2017), nor, as in
Bayesian inversion, do we try and estimate these parameters. Instead, we marginalise to derive a prior
distribution over the model solutions un. This provides a principled way to derive a physics-informed
prior distribution from the governing equations, through marginalising over uncertainty inside of
them.

Another interpretation of this approach is that we shift the additive GP model error of Kennedy
and O’Hagan (2001) into the governing equations. However instead of placing the GP prior over
the PDE variable, as in Raissi and Karniadakis (2018), we leverage the induced uncertainty over
the assumed unknown forcing to give a prior. Similar to a UDE, having expressed this uncertainty
inside of the PDE, we use classical numerical methods to discretise the problem, in our case the
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Chapter 1. Introduction

finite element method, the most widely-used PDE discretisation technique in science and engineering.
Hence unlike probabilistic numerics, discretisation uncertainty is not explicitly included in the derived
prior measure.

Subsequently, the prior is updated in a sequential fashion, as in data assimilation, through standard
nonlinear filtering algorithms (the EnKF and ExKF as above). This gives a posterior distribution
p(un | y1:n,Λ), which describes the belief in the model solutions given the data up to the current time.
In this thesis we study the derivation and computation of this posterior distribution, deriving the
algorithms in the finite-dimensional setting.

We title our approach NL-statFEM, as we build upon the statistical finite element method (statFEM),
as given in Girolami et al. (2021). StatFEM introduces similar methodology for linear, static PDEs and
studied its application to various scenarios with the Poisson equation. Themethodological contribution
of this thesis is the computationally scalable extension of statFEM into nonlinear, time-dependent
problems, demonstrating efficacy on nonlinear PDEs in one and two dimensions, with experimental
and synthetic data. Note that to distinguish our work we refer to our approach as the NL-statFEM
exclusively; we reserve the statFEM label for the work of Girolami et al. (2021) only. We apply our
NL-statFEM to a number of classical nonlinear PDEs, and these results show that:

1. NL-statFEM is able to sequentially combine measurements of phenomena modelled using PDEs
with discretised solutions to their governing equations, giving an approximation to the data
generating process with a statistically coherent uncertainty quantification.

2. Both physics and data can be leveraged to give an interpretable posterior distribution, which
utilises data to reconstruct incompletely observed phenomena.

3. NL-statFEM performs effectively in sparse observation settings.

4. NL-statFEM enables the application of simpler physical models, correcting for model inadequacy
through data, in both weakly and highly nonlinear/chaotic modelling regimes.

5. Taking a low-rank approximation to the covariance matrix scales NL-statFEM to high degrees-of-
freedom models, enabling its application to large-scale systems.

The presentation proceeds as follows. In Chapter 2, the background material of this thesis is
covered, introducing partial differential equations and the finite element method, and probabilistic
inference. Chapter 3 goes through the full construction of the methodology, beginning with the
previous work of Girolami et al. (2021) for the linear, static case, before we detail our extension
— NL-statFEM — as the expansion of this methodology into both time-dependent and nonlinear
problems. Chapter 4 then demonstrates NL-statFEM on three nonlinear, time-dependent PDEs — the
Burgers, Kuramoto-Sivashinsky, and Korteweg-de Vries equations — using synthetic and experimental
data. Chapter 5 further extends the NL-statFEM as presented in Chapter 3, scaling the method
to higher-dimensional systems. In this chapter, we illustrate NL-statFEM on a series of coupled
reaction-diffusion problems in one and two dimensions — a cell reaction-diffusion model and the
Oregonator system — as these provide the requisite increase in dimensionality whilst also containing
sufficient model complexity. The thesis is concluded in Chapter 6 with suggestions for future research.
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1.3. Related work, contributions, and outline

All code to replicate these results is contained in two public repositories, corresponding to the
two publications on which this thesis is based. For results pertaining to Chapter 4 this code is
hosted at https://github.com/connor-duffin/statkdv-paper, and for Chapter 5 this is hosted at
https://github.com/connor-duffin/low-rank-statfem.
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Chapter 2

Background and fundamentals

In order to present our NL-statFEM methodology, various background concepts must be introduced: this is the focus of
this chapter. The physics-informed component of NL-statFEM is assumed to be given by a PDE. Therefore, we begin
with a discussion on partial differential equations, with an emphasis on the classical linear PDE systems. We give a brief
overview of nonlinear PDEs, deferring their exposition to the examples given in Chapter 4 and 5. Discretisation with FEM
is introduced in the context of the Poisson equation, and an example is given to demonstrate the modelling process. Next,
we introduce probability theory and stochastic differential equations (SDEs) as the framework we use to model uncertainty.
After FEM discretisation, the latent dynamical model of NL-statFEM is an SDE. We introduce the SDE notation which
is used throughout the remainder of this thesis, and cover the classical Euler-Maruyama discretisation methods. The
Bayesian statistical framework is then introduced, as this is the framework that we use to sequentially update discretised
SDE trajectories. Both static and dynamic Bayesian inference is introduced, for finite-dimensional unknown quantities. We
conclude this chapter with a discussion on infinite-dimensional Bayesian inference as motivated by Gaussian Processes. As
discussed in the introduction, in NL-statFEM we induce uncertainty in the governing PDE through Gaussian Processes as
these describe uncertainties associated with functions, enabling the inference procedure.

2.1 PDE Modelling and Finite Element Methods

2.1.1 Partial Differential Equations

In this thesis we develop Bayesian statistical methodology to infer over numerical solutions of physical
models. The physical models we work with are partial differential equations (PDEs), which provide a
mathematical description of the rates of change of some quantity of interest with respect to, generally,
some spatial and/or temporal variables. These rates of change are expressed by partial derivatives
and are combined to express some physical law or approximation thereof. A PDE can be defined as
follows (Evans, 2010; Strauss, 2007).

Definition 1. Take some domain D ⊂ Rd, with a boundary ∂D, and let k ≥ 1 be some integer. Then the
expression

F (∇ku(x),∇k−1u(x), . . . , u(x),x) = 0, x ∈ D, (2.1)

where F : Rdk × Rdk−1 × . . .× R× Rd → R, defines a kth order PDE.

In this section a primer on PDE models is provided, focussing on the canonical linear PDE systems
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Chapter 2. Background and fundamentals

most often seen in introductory contexts. PDEs arise in all fields of science and engineering and in this
thesis we are particularly interested in those which include nonlinearity. However, it is difficult to
discuss nonlinear PDEs in the same fashion as the classical linear PDEs, so in this chapter only the
definition of a nonlinear PDE is given. To gain some intuition with their general form, four linear
PDEs are introduced, whose qualitative behaviour is reflected in various ways in the chapters to come.
Historical details can be found in Brezis and Browder (1998).

An early example, first introduced by d’Alembert in 1752, for the one-dimensional case, is the wave
equation

utt −∆u = 0, (2.2)

where ∆ denotes the Laplacian operator ∆u =
∑d

i=1 uxixi . Extensions into two- and three-dimensions
were covered by Euler (in 1759) and Bernoulli (in 1762). The wave equation describes the evolution of
the displacement u on some d-dimensional manifold that arises from the balance of elastic forces, in
the absence of damping. For example, in d = 1 with x ∈ R, Equation (2.2) describes the oscillation
of an infinitely long string. The d’Alembert solution can be derived in this setting and states that for
u(x, 0) = u0(x), ut(x, 0) = v0(x),

u(x, t) =
1

2
(u0(x− t) + u0(x+ t)) +

1

2

∫ x+t

x−t
v0(s) ds.

The wave equation propagates the initial conditions through the domain. There is no damping, with
the initial profile being horizontally displaced along the left- and right-moving components plus
a contribution from the initial velocity. There is some inherent conservation as the energy integral
1
2

∫
R u

2
t (x, t) + u2

x(x, t) dx is conserved for all t.
The Laplace equation

−∆u = 0, (2.3)

was first introduced by Laplace in 1780, being applied to the study of gravitational potential fields.
The inclusion of a forcing term in (2.3), first seen in the context of electromagnetism, gives the Poisson
equation

−∆u = f. (2.4)

The Poisson and Laplace equations describe the steady-state behaviour of a material property, and
can be derived through equating the flux of the material property out of D. In the case of the Poisson
equation, the additional forcing f represents the generation and removal of the material property due
to sources and sinks.

Adding in a time derivative to (2.3) gives the heat equation

ut −∆u = 0, (2.5)

first derived by Fourier (1822). The heat equation describes the diffusion of some material property
throughout the medium and is associated with dissipation. Similar to the Poisson equation, it can be
derived through equating the rate of change of this property to the flux of the quantity out of the
domain D. The steady-state distribution of this quantity satisfies the Laplace equation (in steady
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2.1. PDE Modelling and Finite Element Methods

state, there is no temporal evolution so ut = 0). The heat equation also arises in stochastic differential
equations (SDEs), where, in one dimension, it describes the evolution of the probability density
function of the standard Brownian motion process. In this context it is known as the Fokker-Planck
equation (Øksendal, 2003).

These second-order PDEs are the prototypical examples of hyperbolic, elliptic, and parabolic systems,
respectively. For a general second order equation with Aij = Aji

d∑
i,j=1

Aij
∂2u(x)

∂xi∂xj
+

d∑
i=1

ai
∂u(x)

∂xi
+ u(x) = 0

these PDE classifications can be defined from the eigenvalues of A. The elliptic equations are those
whose eigenvalues are all the same sign. If one of these eigenvalues is zero and the rest have the same
sign, then the equation is parabolic. The equation is called hyperbolic if one of the eigenvalues has the
opposite sign to the d− 1 others.

Boundary conditions may also need to be specified. The Dirichlet boundary condition of u = g on
∂Ω means that u is fixed to g on the boundary. Alternatively we may specify the Neumann condition
that∇u ·n = g, for n normal to the boundary ∂D, or the Robin condition αu+β∇u ·n = g, for nonzero
scalar constants α, β. For time-dependent PDEs such as (2.2) and (2.5), initial conditions should also
be specified: u(x, 0) = u0(x).

Despite the rich phenomena that (2.2)-(2.4) can exhibit, incorporating nonlinear effects may also be
required. For completeness, nonlinearity is now defined here.

Definition 2. A nonlinear PDE is one in which F (·) violates the condition of linearity in any one of its
arguments. That is, letting u = (∇ku(x),∇k−1u(x), . . . , u(x),x) if we cannot write

αF (u) + βF (u) = F ((α+ β)u),

then the PDE F (∇ku(x),∇k−1u(x), . . . , u(x),x) = 0 is nonlinear.

Nonlinearity is commonly encountered in practice and complicates theoretical treatments. General
systems of nonlinear PDEs can usually only be studied analytically on a case-by-case basis, where the
analyst is able to make some assumptions on the parametric form and/or regularity of the nonlinearity.
Therefore, the full discussion of the example nonlinear PDEs considered in this thesis is adjourned
until the examples are presented, due to the different physics that arises in each system.

2.1.2 Finite Element Methods

Ideally, solutions to (2.1) can be obtained analytically, using a separation of variables or a transform-type
method. However, often numerical approaches have to be taken due to nonlinearities or complex
geometries. Additionally — and most pertinent to the contribution of this thesis — is that in order to
update the physical model solutions with observed data, a finite-dimensional numerical solution is
required.

In order to construct these numerical solutions we use the finite element method (FEM), taking
some time here to describe the process of finite element discretisation for the motivating example of
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the Poisson equation. Numerical approaches replace the infinite-dimensional problem of finding the
appropriate function u that satisfies (2.1) with a finite-dimensional substitute that is computationally
tractable.

FEM combines a discrete approximation to the domain D (the mesh) with a specified PDE to
be solved on this domain. The PDE is solved in terms of the weak form, which lowers the order of
differentiability of the solutions whilst still obtaining valid solutions to the PDE of interest (see, e.g.,
Larson and Bengzon, 2013). Instead of providing a pointwise approximation to the PDE as in finite
differences, the FEM solves for a function in a trial space of possible functions. This trial space is
commonly a space spanned by compactly supported polynomial basis functions. For computational
tractability, this function space has a finite number of degrees-of-freedom (DOFs) which parameterise the
functional approximation. The number of DOFs is typically a function of the mesh refinement and the
degree of the polynomial approximation.

In this section the finite element modelling procedure is described, using the two-dimensional
Poisson equation as an example. We focus on spatial discretisation, as temporal discretisation will be
taken care of via Euler-Maruyama methods, discussed in the proceeding Section 2.2. This is because
all time-evolving systems that are studied in the later chapters are in fact SDEs which arise from
FEM discretisation of stochastic PDEs (developed fully in Chapter 3). For some references to FEM
modelling, see Brenner and Scott (2008); Ciarlet (2002); Langtangen and Mardal (2019); Suli (2020);
Thomée (2006), from which the following presentation draws from.

As a motivating example throughout this section, consider the Poisson equation
−∆u = f,

u = 0, for x ∈ ∂D,

u := u(x), x ∈ D ⊆ R2.

(2.6)

Various function spaces are required to discuss the FEM solution to (2.6). To begin, we introduce the
spaces of continuous functions Cp(D;R).

Definition 3. The Cp(D;R) spaces are the spaces of functions u : D → R such that u is p-times continuously
differentiable. Cp0 (D;R) is the space of functions which are p-times continuously differentiable and vanish on the
boundary ∂D. Let

C∞(D;R) =
⋂
p≥0

Cp(D;R), C∞0 (D;R) =
⋂
p≥0

Cp0 (D;R).

The Lp(D;R) spaces, 1 ≤ p ≤ ∞ are defined next.

Definition 4. The Lp(D;R) spaces, for 1 ≤ p <∞, are the spaces of functions f : D → R such that

Lp(D;R) = {f :

∫
D
|f(x)|p dx <∞, almost everywhere}

with norm

‖f‖p =

(∫
D
|f(x)|p dx

)1/p

.

The integral is to be understood as a Lebesgue integral. The elements of Lp(D;R) are the sets of equivalence
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classes of square-integrable functions, which are the same up to sets of measure zero. The space L2(D;R) is a
Hilbert space with inner product 〈·, ·〉, defined by

〈f, g〉 =

∫
D
f(x)g(x) dx.

Note that 〈f, f〉 = ‖f‖22. The space L∞(D;R) denotes the set of functions which are bounded almost everywhere.
The norm is defined by

‖u‖∞ = inf {C : |u(x)| ≤ C, for almost every x} .

For clarity, when referring to multiple integrals over D ⊂ Rd we use the notation∫
D
f(x) dx :=

∫
. . .

∫
D
f(x1, . . . , xd) dx1 . . . dxd,

where the individual integral bounds are defined from the region D.
Next, the Sobolev spaces are defined, which are the spaces in which we “look” for weak solutions to

(2.6). They rely on the notion of a weak derivative, which generalises the derivative through integration
by parts. Consider the multiindex α = (α1, . . . , αd) such that |α| = α1 + . . . + αd = k. A partial
derivative for some test function v ∈ C∞0 (D;R) is

Dαv =
∂k

∂xα1
1 . . . ∂xαdd

v.

The weak derivative of some function u ∈ L1(D;R) is the function w ∈ L1(D;R) such that∫
D
uDαv dx = (−1)|α|

∫
D
wv dx,

for all v ∈ C∞0 (D;R). Denoted by w = Dαu, the weak derivative coincides with the partial derivative
for u sufficiently smooth.

The Sobolev spaces are those which have Lp(D;R) weak derivatives up to order k, and are defined
here.

Definition 5. The Sobolev spaceW k,p(D;R) is the space of functions f : D → R, defined by

W k,p(D;R) = {f : ‖Dαf‖p <∞, |α| ≤ k}.

They have the associated norm

‖f‖k,p =

∑
|α|≤k

‖Dαf‖pp

1/p

.

The special case ofW k,2(D;R) is a Hilbert space and is denoted by Hk(D;R). For functions which vanish on
∂D, these are denoted by Hk

0 (D;R).

The weak form of (2.6) is now derived. From here on in it is assumed f ∈ L2(D;R). First, take
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(2.6), multiply with some test function v ∈ C∞0 (D), and integrate by parts∫
D
∇u · ∇v dx =

∫
D
fv dx. (2.7)

The Dirichlet conditions result in terms due to the boundaries vanishing. The right hand side is the
L2(D;R) inner product 〈f, v〉. Next, it is assumed that u ∈ H1

0 (D;R) and v ∈ H1
0 (D;R)1. From (2.6) a

bilinear form AΛ : H1
0 ×H1

0 → R is then defined,

AΛ(u, v) :=

∫
D
∇u · ∇v dx, (2.8)

which is generated from LΛ. Pulling all this together we define the weak problem for the Poisson
equation: find u ∈ H1

0 (D;R) such that for all v ∈ H1
0 (D;R), AΛ(u, v) = 〈f, v〉. Through the Lax-

Milgram theoremunique solutions are guaranteed: the problem iswell-posed on function space (Evans,
2010).

To discretise the problem, the finite element is first introduced. A finite element is a triple (D,P,N ),
where D ⊂ D is a bounded closed set with a smooth boundary, P is a finite-dimensional space of
functions, defined on D, and N = (N1, . . . , Nm) is a set of nodal values that are defined on the dual
space P∗. A useful basis is the nodal basis of P , {φ1, . . . , φm}, that is dual to N . This nodal basis is
defined by Ni(φj) = δij and using the nodal basis we define the local interpolant inside of the finite
element (D,P,N ) as

IDv =

m∑
i=1

Ni(v)φi.

Some example finite elements are as follows (see also Chapter 3 from Brenner and Scott (2008) for
more examples). Their domains and nodal locations are shown in Figure 2.1.

1. Consider D = [x1, x2] and suppose that N = (N1, N2), N1(v) = v(x1), N2(v) = v(x2), for
some function v. It can be shown that the basis functions {φ1, φ2} defined by N are the linear
polynomials φ1(x) = (x− x1)/(x2 − x1), φ2(x) = (x2 − x)/(x2 − x1). As P = span{φ1, φ2}, the
function space P is the space of piecewise linear polynomial functions on [x1, x2]. This is known
as the P1 element in 1D.

2. Consider some triangle D ⊂ R2 with nodal points {x1,x2,x3}. Setting N = (N1, N2, N3),
where Ni(v) = v(xi) for some function v, gives P as the space of piecewise continuous linear
polynomials over D. This is known as a the P1 element in 2D.

3. Over the same triangle D with the nodal points {x1,x2,x3} and midpoints {x4,x5,x6} then
N = (N1, . . . , N6), where Ni(v) = v(xi), gives P as the space of piecewise quadratic functions
over D. This is the P2 element in 2D.

As the dimensionality of N is increased the order of the space of polynomials given in P also
increases. For degree k polynomials in P , it is required that dimP = (k + 1)(k + 2)/2, to give
the Pk elements.

1These spaces are known as the test and trial spaces, respectively.
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x1 x2

(a) P1 element (1D).

x1 x2

x3

(b) P1 element (2D).

x1 x2

x3

x4

x5x6

(c) P2 element (2D).

Figure 2.1: Finite elements: the piecewise linear P1 interval element, the piecewise linear P1 triangular
element, and the piecewise quadratic P2 triangular element.

Finite elements are the objects that the finite element discretisation is constructed from. However,
some additional structure is needed to combine these over the PDE domain D. First, a subdivision is
required, which is a finite collection of finite element domains Di such that intDi ∩ intDj = ∅ if i 6= j

and
⋃
iDi = D. The subdivision is known as the mesh in the finite element literature. A particular case

of a subdivision, and the one that we use in this thesis, is a triangulation. The triangulation Dh is a
subdivision of D that consists of triangles Di in which no vertex of any triangle lies in the interior of
an edge of another triangle. The parameter h is the maximal length of any side of the triangulation Dh
and parameterises the degree of mesh-refinement.

On each triangle Di there is a finite element, (Di,Pi,Ni), and from this set of finite elements the
global interpolator can be constructed. The global interpolator Ih is defined from the combination of all
local interpolators and, for an arbitrary function f , is given by

Ihf |Di = IDif,

where f |Di denotes the restriction of the function f to the subdomain Di. Across the domain Dh it
constructs an approximation to v from the nodal valuesNi. To simplify the derivations in the following
chapters we write the global interpolant as

Ihf(x) =
n∑
j=1

f(xj)φj(x), (2.9)

where {xj}nj=1 is the set of all unique nodes defined from the set of element nodal values Ni and their
respective evaluation functionals.

The basis functions {φj}nj=1 are the piecewise combinations of the nodal basis functions which
satisfy φj(xi) = δij ; these are typically the piecewise continuous polynomials of degree r. They are
related to the local basis functions on an arbitrary finite element (Di,Pi,Ni) through the local-to-global
mapping (Langtangen andMardal, 2019). The local-to-global mapping q(i, j) takes an element number
i and local basis function index j and maps into the set of {1, . . . , n}, to give the basis function’s index
in the global index set. This allows for the global interpolant on a subdomain Di to be written as

Ihf|Di =
m∑
j=1

f(xq(i,j))φq(i,j)(x)|Di .

We now return to the weak form of (2.7). Taking the P1 finite elements over the triangulation
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Chapter 2. Background and fundamentals

Dh as the discretisation of the domain gives the trial function space Vh = span{φj}nj=1. This defines
the finite-dimensional test and trial spaces. An additional requirement is added, so that functions
in Vh are those which vanish on the boundary ∂Dh and so Vh ⊂ H1

0 (D;R). From (2.9) we write
the global finite element approximations to u(x) and v(x) as u(x) ≈ uh(x) =

∑n
j=1 ujφj(x) and

v(x) ≈ vh(x) =
∑n

j=1 vjφj(x) respectively. Substituting these functions into the weak form gives
AΛ(uh, vh) = 〈f, vh〉which expands to

n∑
i=1

ui

∫
Dh
∇φi · ∇vh dx =

∫
Dh
f vh dx, ∀vh ∈ Vh.

As this must hold for all vh ∈ Vh, this condition is equivalent to holding for all basis functions φj , for
j = 1, . . . , n, so

n∑
i=1

ui

∫
Dh
∇φi · ∇φj dx =

∫
Dh
f φj dx, for j = 1, . . . , n.

This is a finite-dimensional linear system Au = b, with Aji =
∫
Dh ∇φi · ∇φj dx and bj =

∫
Dh f φj dx.

The vector of FEM coefficients u = (u1, . . . , un) is to be solved for.
As an aside, as Vh ⊂ H1

0 (D;R) we also have AΛ(u, vh) = 〈f, vh〉. Thus
∫
D∇(u− uh) · ∇vh dx = 0,

for all vh ∈ Vh. The solution uh is the orthogonal projection of u into Vh with respect to the Dirichlet
inner product.

The construction of the stiffness matrix A and load vector b is done elementwise as the integral can
be decomposed via Aij =

∑n
k=1 Ak

ij , with Ak
ij =

∫
Dk
∇φi · ∇φj dx. The individual elements Di are

iterated over to assemble the matrix A. Due to the delta property of the basis functions, Ak
ij is nonzero

if and only if the xi and xj are nodes in elementDk (Langtangen and Mardal, 2019). This results in the
matrix A being sparse. The load vector is assembled in a similar elementwise fashion. Typically some
sort of numerical quadrature routine (e.g. Gauss quadrature) is used to evaluate the integrals.

Two main approaches are available to solve the linear system Au = b: direct and iterative methods.
Direct methods compute a factorisation of the form A = LU, where L and U are lower and upper
triangular matrices, respectively, and then solve (LU)−1 b using forward and backward substitution,
respectively (Davis, 2006). If A is symmetric and positive definite, as is the case here, then this
factorisation is the Cholesky decomposition A = LL>. Up to numerical precision this computes
the exact solution to the linear system. Direct approaches tend to use more memory than iterative
approaches, but are more reliable and give similar performance for low to medium size problems.
They are also preferred when solving for multiple right hand sides (i.e. a system of the form AU = B)
as the factorisation only needs to be computed once; the factors are reused to run forward and back
substitution.

Iterative methods take a different approach and construct an approximate solution — up to some
specified tolerance — through an iterative procedure (Saad, 2003). Two popular approaches are
the conjugate gradient (CG) method for symmetric, positive definite systems, and the generalised
minimum residual method (GMRES) for nonsymmetric systems. Iterative solutions are constructed
through taking matrix-vector products (“matvecs”) of the form Ax, which in this case are efficient
due to the sparsity of A. Note also that A need not be assembled; it only needs to be available as
a function that computes the mapping x 7→ Ax. This allows, in implementation, for the abstract

16



2.1. PDE Modelling and Finite Element Methods

(a) FEM solution (shown as surface) and
regular mesh, over the solution domain
D = [0, 1]× [0, 1].

(b)Verification ofL2(D;R) error undermesh-
refinement, as a function of themaximal edge-
length h. Shown also are the estimated rates
of convergence for the P1 and P2 elements.

Figure 2.2: Poisson equation example: finite element discretisation results.

representation of these operators without explicit storage. Iterative approaches are preferred for large
systems as factorisations may not be able to be stored in memory due to fill-in2. However, convergence
is typically determined by the condition number of A and if the matrix is poorly conditioned (as is
the case for FEM) then a preconditioner may be required. A preconditioner M is applied to both sides,
giving the equivalent problem MAu = Mb3. The idea is to choose M to be an approximation to the
inverse of A that is able to be easily applied to a vector. The composition of the operators MA is
thus better-conditioned than the original A and so the iterative approaches converge faster. Popular
preconditioning approaches include, among others, incomplete factorisations, sparse approximate
inverses, and multigrid methods (Saad, 2003).

Given that the FEM constructs a numerical approximation to the solution of (2.6), there will be
some error between the approximate and exact solutions. The error will be a function of how refined
the mesh is, parameterised by h, and the order of the polynomial approximation, parameterised by
r. For an exact solution u(x) and approximate solution uh(x) ∈ Vh, with Vh being the finite element
solution space with degree r polynomials, then, for the Poisson equation, the error rate can be derived
to be (see, e.g., Brenner and Scott (2008); Thomée (2006))

‖u− uh‖2 ≤ Chr+1‖u‖r+1,2. (2.10)

We now show an example of finite element modelling, in which this rate of convergence is illustrated.

Example 1. Consider the specific example of a Poisson equation over the unit square with Dirichlet

2Fill-in is where zero entries in the original sparse matrix end up being set to some non-zero value upon factorisation.
This increases the memory requirements.

3Known as left preconditioning.
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Chapter 2. Background and fundamentals

boundaries and inhomogeneous forcing:
−∆u = 8π2 sin(πx1) sin(πx2),

u = 0, for x ∈ ∂D,

u := u(x), x ∈ D = [0, 1]× [0, 1].

(2.11)

This equation has the exact solution u(x1, x2) = 4 sin(πx1) sin(πx2).
In this example, we use the P1 elements over a uniform mesh with 10× 10 cells. Cells in this case

are the individual triangular elements that make up the triangulation; this mesh is shown on the
(x1, x2) plane in Figure 2.2a. The estimated solution uh(x) is shown in Figure 2.2a. At the furthest
distance away from the (fixed to zero) boundary ∂D, the approximate solution reaches its maximum
due to the positive forcing term. The solution demonstrates the balance between the zero BC’s, which
behave like a sink, and the source that results from the forcing function. The error rates are shown
in Figure 2.2b. The P1 elements give r + 1 ≈ 2 and the P2 elements give r + 1 ≈ 3. These results
accord with the convergence result of (2.10) with the substitution of r = 1 and r = 2 for the P1 and P2

elements, respectively.

2.2 Probability theory and stochastic differential equations

NL-statFEM updates the FEM discretised PDE solutions with observed data via a probabilistic
approach. Section 2.2.1 therefore introduces the basic machinery of probability theory which will
be used throughout the rest of this thesis. Following this, we introduce SDEs in Section 2.2. In
NL-statFEM, the FEM discretisation of the assumed stochastic physical model results in an SDE
over the finite element coefficients. Thus, we introduce the necessary material in order to write
out these induced SDEs, and we cover their discretisation with Euler-Maruyama methods. These
temporal discretisation methods are used in the remainder of this thesis, and we therefore include
some discussion on their convergence properties as well as their stability.

2.2.1 Probability theory

Probability theory is the appropriate calculus to manipulate the state of knowledge of a system as it is
refined or updated through conditional relationships between variables. This state of knowledge is
quantified via a probability measure (Jaynes, 2003), a component of the probability space4. A probability
space is a triple (Ω,F , P ), consisting of the sample space Ω, a σ-field F , and a probability measure
P . The sample space consists of the space of possible outcomes of some random experiment, with
atoms ω. The σ-field is the set of all subsets of Ω such that (i) Ω ∈ F ; (ii) A ∈ F =⇒ Ac ∈ F ; and (iii)
A1, A2, . . . ∈ F =⇒

⋃
iAi ∈ F . Note that Ac denotes the complement of the set A. The elements of

F are known as measurable sets. The probability measure P : F → [0, 1] assigns a probability to the
events in F , satisfying (i) P (Ω) = 1; and (ii) P (

⋃
iAi) =

∑
i P (Ai) for disjoint Ai.

A random variable X : Ω→ E is a measurable function that maps samples ω to the output space E.
This output space is most often the real line R or the Euclidean space Rn. To define a measurable

4For some general references to this material see Billingsley (2012); Durrett (2019); Williams (1991).
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2.2. Probability theory and stochastic differential equations

function we require first the idea of a general σ-field over sets with some topology. On Rwe introduce
the Borel σ-field B, the σ-field generated by the open sets of R. For a general space E, denote by B(E)

the Borel σ-field, which is the σ-field generated by the open sets of E. The random variable X being
measurable thus means that, for all A ∈ B(E), X−1(A) = {ω : X(ω) ∈ A} ∈ F .

A random variableX is distributed according to a law L := P ◦X−1 which is a probability measure
on (E,B(E)) (and thus L : B(E)→ [0, 1]). The law is completely defined by the distribution function
F : E → [0, 1], where P (ω : X(ω) ≤ c) = F (c). We use the notation that X ∼ L to state that X is
distributed according to the law L. As an example of this notation, two common distributions that are
used throughout this thesis are the univariate Gaussian distribution X ∼ N (m,σ2) with meanm and
variance σ2, and the multivariate Gaussian distribution X ∼ N (m,K) with mean m and covariance
matrix K.

The expected value of a random variable X is the Lebesgue integral5

E[X] =

∫
Ω
X(ω) dP (ω),

and the qth moment is
E[Xq] =

∫
Ω
Xq(ω) dP (ω).

The spaces of random variables that have finite qth moments are known as the Lq(P ) random variables.
These spaces are the same as those defined for functions in the previous section, except that in this
case integration is done with respect to a probability measure and not the Lebesgue measure

Lq(P ) =

{
X :

(∫
Ω
|X(ω)|q dP (ω)

)1/q

<∞

}
.

We say that {Xn(ω)}n converges to X(ω) in the Lq(P ) sense if limn→∞
∫

(Xn(ω) −X(ω))q dP (ω) =

limn→∞ E[(Xn(ω)−X(ω))q] = 0.
The Radon-Nikodym derivative of two measures Q and P , defined on the same measurable space

(Ω,F), is the function f such that
Q(A) =

∫
A
f(ω) dP (ω).

If P (A) = 0 =⇒ Q(A) = 0, for A ∈ F then the positive measurable function f exists and is known
as the Radon-Nikodym derivative. For shorthand, where needed we will write dQ

dP = f . For random
variables X : Ω → Rn, which are measurable on the space (Rn,B(Rn)), then the probability density
function p : Rn → R is the Radon-Nikodym derivative of the law with respect to Lebesgue measure
over Rn

P (ω : X(ω) ∈ A) = L(A) =

∫
A
p(x) dx.

For shorthand the terms density and measure are used interchangeably. In this vein, the notations
X ∼ L and p(X) = L are also used interchangeably throughout, to denote that the random variableX
is distributed according to Lwith density p(·).

5In this we use the Lebesgue integral to refer to integration with respect to any measure; it should be clear by context the
measure to which we are integrating against.
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Chapter 2. Background and fundamentals

An important class of measures are the Gaussian measures, which are probability measures that can
be used to conduct inference in the infinite-dimensional (function space) setting. When formulating
our NL-statFEM inference problem, we will derive a Gaussian measure to represent the state of
knowledge of the system in the absence of data. Thus, the definition of Gaussian measure is included.

Definition 6. Consider the Hilbert space H and suppose that X ∼ µ. Then the measure µ is Gaussian if for
any element b ∈ H∗,6, b(X) ∼ N (mb, σ

2
b ), formb ∈ R, σb ∈ R.

This definition does not require X to be a Hilbert space, but it is included as, in this thesis,
Hilbert spaces are the only function spaces that we work with. This definition follows through
when considering the finite dimensional case, in which Gaussian measure is given by a multivariate
Gaussian.

Example 2. Take H := Rn and let x ∼ µ = N (m,K) be a multivariate Gaussian. We show that this
does indeed define an Gaussian measure. If we consider thatH is the space of column vectors, the dual
space, H∗, consists of the space of row vectors. Thus, the functional b(x) can be written as b(x) = a>x,
for some a ∈ Rn. Therefore, a>x ∼ N (a>m,a>Ka), due to being an affine mapping of a Gaussian, so
thatmb = a>m and σ2

b = a>Ka. Positive definiteness of K ensures that σ2
b is also positive, so µ is a

Gaussian measure.

Finally, we mention the Dirac measure. This is given by the function δx(·) : Ω→ {0, 1}, such that
δx(A) = 0 if x /∈ A and δx(A) = 1 if x ∈ A.

2.2.2 Stochastic Differential Equations

In this thesis, inference over the discretised PDE solutions mostly takes place in the time-evolving
setting. For our NL-statFEM the model formulation results in systems of stochastic differential
equations (SDEs) which describe the dynamics over the finite element coefficients. In this section the
background SDE material is developed, building upon the basic foundations of probability theory. For
further details see Øksendal (2003); Särkkä and Solin (2019), from which this material is based upon.

SDEs are ODEs that include stochastic terms7. Stochasticity is most commonly found through
additive or multiplicative noise, in which an ordinary differential equation is augmented to include
some noisy additive or multiplicative term. Informally, a simple scalar SDE may be written as

du

dt
= f(u, t) + b(u, t)w(t),

where {w(t)}t≥0 is a mean-zero stochastic process that has delta correlations: E[w(t)w(t′)] = δ(t− t′)8.
The function f(·, ·) is known as the drift coefficient and the function b(·, ·) is known as the diffusion
coefficient. The solution u(t), for t > 0, can be obtained through integrating (2.2.2) with respect to time

u(t) = u(0) +

∫ t

0
f(u(s), s) ds+

∫ t

0
b(u(s), s)w(s) ds,

6The notation H∗ denotes the dual space of H . For H defined over the scalar field R, the dual space is the space of
functionals φ ∈ H∗ such that φ(x) ∈ R for x ∈ H

7In full generality this can be extended to PDEs, however this theory is not required for NL-statFEM and is beyond the
scope of this thesis.

8This is somewhat pathological: this process is not even measurable (Øksendal, 2003) however it does provide the basic
motivation for the desired properties of the stochastic process under consideration
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2.2. Probability theory and stochastic differential equations

yet the second integral is problematic. Approaching it as a Riemann integral gives the approximation

∫ t

0
w(s) ds = lim

N→∞

N−1∑
n=0

w(t∗n)(tn+1 − tn),

where 0 = t0 < t1 < . . . < tN = t, and t∗n ∈ [tn, tn+1]. Recall that the “upper sums” consist of those
sums where the term w(t∗n) is its maximum point inside [tn, tn+1], and the “lower sums” are those
in which we take w(t∗n) to be the minimum point inside [tn, tn+1]. The Riemann integral converges
if these two sums converge to the same value. In the case of the white noise process this process is
unbounded (having infinite variance) so these two sums do not converge.

To resolve this a stochastic integral is needed, which integrates with respect to a stochastic process in
a similar fashion to the Riemann-Stieltjes integral. To do so, however, the Brownian motion process
needs to be defined, which is the stochastic process against which we will integrate.

Definition 7. The Brownian motion process9 β : R+ × Ω→ Rn is a stochastic process which is continuously
indexed by time t ∈ R+. We write the Brownian motion as β(t, ω), however where dependency on ω is
superfluous we write β(t, ω) ≡ β(t). Brownian motion has the following properties:

1. P (β(0) = 0) = 1 (starts at 0).

2. β(t+ ∆t)− β(t) ⊥ β(t) (independent increments).

3. β(t+ ∆t)− β(t) ∼ N (0,∆tG) (Gaussian increments).

Given a single element ω, β(t, ω) defines a sample path indexed with t. For a given t, β(t, ω) is a random
variable. The matrix G is sometimes referred to as the diffusion matrix (Särkkä and Solin, 2019).

Some motivation for the Riemann-Stieltjes approach can be obtained through discretising (2.2.2)
using a standard Euler discretisation (Hairer et al., 1993):

un+1 − un = ∆tf(un, tn) + ∆tb(un, tn)wn,

where un = u(tn), wn = w(tn), tn+1 − tn = ∆t. Next, we want to replace ∆twn with some stochastic
process that has a mean of zero and independent draws. One such approach is to therefore replace
∆twn = Bn+1 − Bn, so that the white noise is the increments of a Brownian motion process B(t, ω).
Summing over all times gives the approximation

u(t) = u(0) +

N∑
n=1

∆tf(u(tn−1), tn−1) +

N∑
n=1

b(u(tn−1), tn−1)(Bn −Bn−1)

which motivates that as N →∞,

u(t) = u(0) +

∫ t

0
f(u(s), s) ds+

∫ t

0
b(u(s), s) dB(s),

9In the case in which β ∈ Rwith variance G ≡ 1 is known as the standard Brownian motion.
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through replacing the sums with integrals. However this is still not able to be realised, as the
Riemann-Stieltjes integral with respect to Brownian motion also does not exist. This is due to the limit

∫ t

0
b(u(s), s) dB(s) = lim

N→∞

N∑
n=1

b(u(t∗n), t∗n)(Bn −Bn−1)

being dependent on the value of t∗n onwhich is taken— this cannot be the case for the Riemann-Stieltjes
integral. To make this limit unique fix t∗n = tn−1 and define the Itô stochastic integral as

∫ t

0
b(u(s), s) dB(s) = lim

N→∞

N∑
n=1

b(u(tn−1), tn−1)(Bn −Bn−1),

where the limit is taken in the L2(P ) sense. The Itô integral provides the motivation for expressing the
SDE (2.2.2) in the shorthand

du(t) = f(u, t) dt+ b(u, t) dB(t), (2.12)

which implies the integral equation

u(t) = u(0) +

∫ t

0
f(u, t) dt+

∫ t

0
b(u, t) dB(t).

For the vector-valued case the construction is the same, replacing the standard Brownian motion with
its vector-valued counterpart.

To discretise (2.12) we use three standard schemes throughout the remainder of this thesis. The
first has already been introduced, being the explicit Euler or Euler-Maruyamamethod (Higham, 2001;
Kloeden and Platen, 1992), which is given by

un+1 − un = ∆tf(un, tn) + ∆tb(un, tn)∆Bn,

where ∆Bn = B(tn+1)−B(tn) ∼ N (0,∆t). The implicit Euler can also be used

un+1 − un = ∆tf(un+1, tn+1) + ∆tb(un, tn)∆Bn,

so too the Crank-Nicolson

un+1 − un = ∆tf(un+1/2, tn+1/2) + ∆tb(un, tn)∆Bn,

where un+1/2 = (un+1 + un)/2. These schemes are at most semi-implicit as we do not treat the noise
terms implicitly. As noted in Kloeden and Platen (1992), due to fully-implicit SDE schemes often
requiring reciprocals of Gaussians (which do not have finite second moments) we restrict implicit
schemes to being implicit in the drift component only (i.e. the component arising from the PDE
discretisation).

We also require notions of how the discretisation converges to the true process as the discretisation
interval ∆t is refined. Consider the time-discrete approximation u∆(t), the linear interpolation of the
simulation timepoints {un}Nn=1. This is itself a stochastic process. A time-discrete approximation u∆(t)
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2.2. Probability theory and stochastic differential equations

(a) Explicit Euler. (b) Implicit Euler. (c) Crank-Nicolson.

Figure 2.3: Time integrator stability regions for those used in this thesis.

is said to converge weaklywith order β if for all polynomials g there is a C > 0 so that

|E[g(u(t))− g(u∆(t))]| ≤ C∆t
β.

The time-discrete approximation is said to converge stronglywith order β if

E [|u(t)− u∆(t)|] ≤ C∆t
β.

Weak convergence only ensures that expectations of functionals of the time-discrete approximation
converge at the rate β; for error rates on the time-discrete approximation itself, the notion of
strong convergence is required. Weak convergence relaxes the requirements that the time-discrete
approximations are pathwise accurate, and can allow for non-Gaussian noise simulations which
preserve the Gaussian moments. All schemes that we consider in this thesis have a strong order of
convergence of 0.5 and a weak order of convergence of 1.

These schemes can also be studied through their stability, which describes how we expect the
numerical scheme to behave for large time. This proceeds similarly to that of A-stability in the
deterministic setting (Hairer et al., 1993), and begins with the complex-valued scalar test SDE

dx(t) = λx dt+ dB(t), λ ∈ C. (2.13)

Assuming that (2.13) is discretised with a uniform timestep ∆t gives a recursive updating scheme of
the form

xn = G(λ∆t)xn−1 + ∆Bn, ∆Bn ∼ N (0,∆t),

for some G : R→ R. The region of absolute stability is {z : |G(z)| ≤ 1, <(z) < 0}, building from the
intuition that |xn − x̂n| ≤ |G(λ∆t)|n|x0 − x̂0|, for two discretisations, starting at x0 and x̂0. Note that
in this thesis we use <(·) and =(·) to denote the real and imaginary components of some quantity.

For the explicit Euler this region is {z : |1 + z| ≤ 1}, for the implicit Euler this is {z : 1/|1− z| ≤ 1},
and for the Crank-Nicolson this is {z : |1 + z/2|/|1− z/2| ≤ 1}. These regions are plotted in Figure 2.3.
The region of stability for both the explicit Euler is small (the unit disk centred at −1). The stepsize is
naturally constrained by λ. For λ < 0 (i.e. for decaying systems) both the implicit methods are stable
for all ∆t; in practice we tend to prefer these methods.
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2.3 Bayesian Inference

After deriving an SDE over the finite element coefficients we update these coefficients given a set of
observed data. This can be framed as a Bayesian inference problem where the SDE implicitly defines
a prior distribution. The update refers to the computation of the posterior distribution: the probability
distribution of these coefficients given the dataset. For our NL-statFEM, this is done in a sequential,
online fashion through leveraging the filtering algorithms introduced in Chapter 1. However in order
to motivate our algorithmic choices we first discuss Bayesian inference in the static parameter setting,
establishing the general Bayesian workflow and the difficulties associated with moving this workflow
into the time-evolving case. We then discuss the previously introduced filtering algorithms, expanding
upon the presentation given in Chapter 1. This section concludes with the required background
information on Gaussian Processes, which we leverage in NL-statFEM to induce uncertainty inside of
the assumed governing PDE.

We encode our assumptions about the data generating process in the likelihood function, which we
denote by p(y | θ). Taking a Bayesian approach means that this likelihood is combined with some
a priori specification of knowledge about θ. This knowledge is encoded in a prior distribution with
density p(θ), and is updated with data via Bayes rule to give the posterior

p(θ | y) =
p(y | θ)p(θ)∫
p(y | θ)p(θ) dθ

. (2.14)

The prior forms the basis for inference and the posterior describes the state of knowledge of θ
conditioned on the assumed likelihood function and prior distribution. Modelling assumptions
present in the likelihood and the prior therefore manifest in the posterior.

This general update rule was derived by Thomas Bayes (Bayes, 1763) with parallel developments by
Laplace (Laplace, 1812). Each of these foundational works focused on the estimation of the unknown
parameter in a Binomial model and derived expressions that resemble the current presentation of Bayes
theorem. Modern Bayesian methods have grown from the foundational texts of Lindley (1965), Savage
(1972), and Jaynes (2003), among others. These texts motivate the Bayesian interpretation of probability
as being one of a degree-of-belief in the state of some system, thus permitting the combination of
multiple sources of information. As data is observed, a priori beliefs are updated to give an a posteriori
characterisation of the state of knowledge. As such a wider variety of probabilistic scenarios can be
described within a Bayesian framework (Ramsey, 1926).

Important practical contributions also came from de Finetti and Jeffreys. De Finetti provided
motivation for statistical inference as proceeding from the principle of exchangeability (de Finetti, 1974).
Exchangeability is the property that the joint distribution of a set of random objects {yj}nj=1 is invariant
to permutations of the orderings of this set. De Finetti’s theorem states that in the instance that these
random variables are Bernoulli random variables, then they are exchangeable if and only if they are
conditionally independent conditioned on another random variable. Exchangeability thus ensures
that p(y1, . . . , yn | θ) =

∏n
j=1 p(yj | θ), guaranteeing the existence of some parameter θ which can thus

be inferred.
The Jeffreys’ prior (Jeffreys, 1961) is a parameterisation-independent way of describing the prior

state of knowledge of the system, motivating an “objective” approach to Bayesian statistics that was
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free of subjectivity in the choice of the prior. The subjectivity inherent in the choice of prior remained
a point of contention between Bayesian and non-Bayesian statisticians. Yet it should be noted that
no method is truly objective; all statistical models require specification at some level (Gelman and
Hennig, 2017).

Until the mid-1990s Bayesian models were not widely used due to difficulties in computing the
posterior distribution, being relegated to cases in which themarginal likelihood, p(y) =

∫
p(y |θ)p( dθ),

was able to be analytically computed. This changed with the advent of Markov Chain Monte Carlo
(MCMC) algorithms, which construct a Markov Chain whose stationary distribution coincides with
the posterior distribution of interest (Casella and George, 1992; Chib and Greenberg, 1995; Tierney,
1994). The development and uptake of MCMC has led to the proliferation of Bayesian statistical
methodology throughout academic disciplines and has led to widespread application (Faber, 2012;
Gelman et al., 2013; Gill, 2002; Ivezić et al., 2014; Lesaffre and Lawson, 2012; Sharma, 2017).

MCMC forms a Markov Chain {θn}∞n=1 which as n→∞ ensures θn ∼ p(θ | y). For a finite set of
MCMC samples {θn}Nn=1 this allows for the Monte Carlo approximation of the integral via

E[f(θ)] =

∫
f(θ) p( dθ | y) ≈ 1

N

N∑
j=1

f(θj).

MCMC relies on the derivation of an appropriate Markov transition kernel Π(·, ·), which is defined
to be ameasurable function, with respect to the parameter space, in the first argument, and a probability
measure in the second argument. Thus supposing we have a Markov Chain {θn}n which is currently
at θ the kernel states P (θn+1 ∈ A | θn = θ) = Π(θ, A).

To construct such a kernel the Metropolis-Hastings criterion can be used. This combines a proposal
density q(θn,θ∗), which takes the current state of the Markov Chain θn and proposes a new value
θ∗ ∼ q(θn, ·), with a bias-adjusted correction given by

α(θn,θ
∗) = min

{
1,
p(θ∗ | y)

p(θn | y)

q(θ∗,θn)

q(θn,θ
∗)

}
. (2.15)

Note that the marginal likelihood cancels in (2.15) and thus the posterior distribution only needs to be
known up to normalising constant. The proposed θ∗ is accepted with probability α(θn,θ

∗) and thus
θn+1 = θ∗, otherwise it is rejected and θn+1 = θn.

Under suitable conditions on q(·, ·) and α(·, ·)10 the density of the transition kernel Π(·, ·) can then
be defined as

π(θ, dθ∗) = α(θ,θ∗)q(θ, dθ∗) + r(θ)δθ( dθ∗)

where r(θ) = 1 −
∫
α(θ,θ∗)q(θ, dθ∗). We use the notation π(θ, dθ∗) indicate that, in the second

argument, π(·, ·) is a probability density function. This methodology yields a Markov Chain {θn}n
which as n→∞ converges to the true posterior. MCMC is thus an approximately exactmethod; samples
drawn are guaranteed to be drawn from the true posterior in the limit as n→∞. Approximations
arise from truncating the chain to finite time.

For a symmetric q(·, ·) this methodology was first introduced in Metropolis et al. (1953). The

10We use a slight abuse of notation as in the case in which θ = θ∗ then we set q(θ,θ∗)α(θ,θ∗) = 0. We define α(θ,θ∗) = 1
if p(θ | y)q(θ,θ∗) = 0.
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generalisation to non-symmetric q(·, ·) was covered in Hastings (1970) and allowed for bespoke
algorithms that have favourable scaling properties and more rapid mixing. These algorithms work
to combat the drawbacks associated with MCMC sampling. These drawbacks include samples
being possibly highly correlated due to the underlying Markovian transition kernel, and samplers
not converging within finite-time to the measure of interest. Algorithms that may ameliorate these
drawbacks include Hamiltonian Monte Carlo (HMC) (Neal, 2012), Langevin Monte Carlo (Roberts and
Tweedie, 1996), and Riemann manifold HMC (Girolami and Calderhead, 2011). Each of these make
use of geometric information to construct a proposal distribution that makes use of the curvature
of the posterior. An alternative MCMC approach, which requires iterative sampling from the “full
conditional” distributions in turn was first described in Geman and Geman (1984) and has since been
dubbed Gibbs sampling. A statistical review of this approach is covered in Casella and George (1992).

2.3.1 Time-evolving inference

The Bayesian framework can also be extended into the time-evolving setting, taking θ ≡ θn, for the
time index n. Inference in this setting focusses on estimating a sequence of posterior distributions,
typically either the filtering posteriors p(θn | y1:n), the posterior of each θn given the data up to time n,
or the smoothing posteriors p(θn | y1:nt), the posterior of each θn given all the data up to the final time
nt. MCMC approaches can target the smoothing distribution through estimating the joint posterior
p(θ1:nt | y1:nt), however this will be computationally demanding due to high dimensionality. Also,
the choice of a proposal distribution q(·, ·) which balances both computational implementability and
desirable convergence properties is unclear, and will only be able to be considered on a case-by-case
basis.

To avoid these challenges, recursive approaches can be used to estimate the filtering and smoothing
distributions without MCMC sampling. These are applicable for common model structures with
conditionally independent observations and latent Markovian dynamics, which is the assumed
structure in NL-statFEM. In brief, discretisation of the governing SDE, in NL-statFEM, results in
Markovian dynamics on the finite element coefficients. Observed data, which is assumed to be
observed at the discretisation timepoints, is assumed to be conditionally independent given the model
values at this observation time. In this section, the inference problem for our model structure is
introduced, focussing on the approximate Gaussian filters and their application in estimating the filtering
posterior p(θn | y1:n).

Data yn is arriving via some assumed data generating process and is typically corrupted with
observational noise. Temporal evolution for the unknown parameters θn proceeds from a known
stochastic model, represented by the first-order Markovian transition density θn ∼ p(θn | θn−1)11. Data
is assumed to be arriving at time n via the observation process p(yn | θn) and the distribution over the
initial condition is known, θ0 ∼ p(θ0). The full model is thus

θ0 ∼ p(θ0), θn ∼ p(θn | θn−1), yn ∼ p(yn | θn), (2.16)

for the time index n = 1, . . . , nt. Due to the sequential nature of the problem the filtering posterior can

11Following the notation of previous section gives π(θn−1, dθn) ≡ p(θn | θn−1). Higher-order Markovian models can
also be used; we stick with first-order models for exposition.
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be computed in a recursive manner. This requires two steps: marginalisation and updating. Assuming
that p(θn−1 | y1:n−1) is known, then the marginalisation step first integrates over the uncertainty in the
previous timestep, computing

p(θn | y1:n−1) =

∫
p(θn | θn−1) p( dθn−1 | y1:n−1).

This distribution forms the prior for the data observed at the current timestep. This step is also known
as the prediction step as we predict the next timestep n given the data up to time n− 1. This is then
updated to give the filtering posterior, up to a normalising constant, as

p(θn | y1:n) ∝ p(yn | θn)p(θn | y1:n−1).

Computing this posterior updates the prediction distribution p(θn | y1:n−1) with the data observed at
the current time to give the filtering distribution p(θn | y1:n).

The joint completion of both the marginalisation and update steps can be complicated as each
involve a potentially intractable integral. In the marginalisation step this arises due to the potentially
nonstandard distributions being used to model the stochastic dynamics p(θn | θn−1). These may arise
from the nonlinearity in an underlying physical model, or from nonstandard noise processes. The
update step encounters the standard problem of not knowing the normalising constant of the posterior
density, as in (2.14).

Various methods have been proposed to overcome these difficulties (see, e.g., Law et al., 2015). We
describe two particular algorithms in detail — the extended and ensemble Kalman filters — which are
applicable to the model structure used in the remainder of this thesis. Discussions on other algorithms
are also given to provide context and motivate our choice in using these. Our model structure is the
nonlinear Gaussian model, restated here for convenience:

θn = F(θn−1) + qn, qn ∼ N (0,Q),

yn = Hθn + rn, rn ∼ N (0,R),
(2.17)

for n = 1, . . . , nt. We assume that qn are independent and identically distributed (i.i.d.) and that
qn ⊥ θn, for all n. It is also assumed that rn are i.i.d. and that rn ⊥ θn.

The stochastic dynamics is based upon additive Gaussian error over the nonlinear model F(·)
and gives the transition density as p(θn | θn−1) = N (F(θn−1),Q). Observations are taken as a linear
mapping of the underlying model state, which uses the observation operator H, with additive Gaussian
observational error.

Setting linear dynamics F(θn) := Fθn means that the posterior can be computed with the Kalman
filter (Kalman, 1960). The Kalman filter was the first methodology that addressed the problem of
physics-data synthesis and extended the previous filtering approaches of Wiener (see, e.g., Wiener,
1964) from the frequency domain into the state space. This extension allowed for much wider
application as the filter now operated in the same parameterisation as the physical model.

The Kalman filter gives a sequential updating procedure for the posterior mean mn and covariance
matrix Cn. Assuming p(θ0) = N (m0,C0) and that the distribution on the previous state is known,
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p(θn−1 | y1:n−1) = N (mn−1,Cn−1), the Kalman filter proceeds by computing the predicted mean and
covariance and time n

m̂n = Fmn−1, Ĉn = FCn−1F
> + Q,

and then updating these predictions with data

mn = m̂n + ĈnH
>(HĈnH

> + R)−1(yn −Hm̂n),

Cn = Ĉn − ĈnH
>(HĈnH

> + R)−1HĈn.

This gives the posterior p(θn | y1:n) = N (mn,Cn). The prediction-updating sequence can be derived
through the affine transformation property of Gaussians and from the multivariate Gaussian condi-
tioning formula (for further detail see Meinhold and Singpurwalla, 1983). The mean mn is the optimal
estimator of the state which maximises the log-posterior density defined by (2.17),

log p(θn | y1:n) ∝ −1

2
(yn −Hθn)>R−1 (yn −Hθn)− 1

2
(θn − m̂n)> Ĉ−1

n (θn − m̂n) .

This is a general framework which arises in many different settings. For example the matrix F

may be a discretised evolution operator from some high-dimensional PDE, or, a scalar coefficient12.
The variety of scenarios in which this framework is applicable has led to widespread application
across engineering and the physical sciences. The framework has also been extended to deal with
continuous-time processes where the dynamics and observation processes are given by stochastic
differential equations (Øksendal, 2003). This is the Kalman-Bucy filter (Kalman and Bucy, 1961), which
is again optimal for linear drift and diffusion terms.

To handle the nonlinearity in (2.17) many approaches can be used, though, for those which
employ Gaussian approximations, optimality of the resultant estimator can no longer be guaranteed.
The extended Kalman filter (ExKF) (Jazwinski, 2007) linearises the nonlinear F(·) at each timestep
to give Gaussian approximation to the posterior distribution. For (2.17), with p(θn−1 | y1:n−1) =

N (mn−1,Cn−1), the update step is therefore given by

m̂n = F(mn−1), Ĉn = JnCn−1J
>
n + Q,

where Jn = ∂F(θn)/∂θn, and p(θn | y1:n−1) = N (m̂n, Ĉn). The update step proceeds as for the
Kalman filter, via the standard Bayes update for a Gaussian:

mn = m̂n + ĈnH
>(HĈnH

> + R)−1(yn −Hm̂n),

Cn = Ĉn − ĈnH
>(HĈnH

> + R)−1HĈn.
(2.18)

This gives p(θn | y1:n) = N (mn,Cn). Accuracy of the approximation depends on how well the action
of the nonlinear F(·) is approximated by the Jacobian. Scalability can be ensured through making
a low-rank approximation to the covariance Cn (see Chapter 5, as well as Law and Stuart, 2012;
Rozier et al., 2007). The mean of the ExKF gives a reasonable approximation to the true posterior

12In this case, the dynamics are given from a standard AR(1) process, e.g. θn = ϕθn−1 + qn, qn ∼ N (0, Q2) (Shumway
and Stoffer, 2017).
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mean, and for regularly observed systems the variance also provides a sensible estimate to the true
variance (Law and Stuart, 2012). However computing a low-rank approximation of the covariance
leads to underestimation (Gillĳns et al., 2006) which can result in placing too much belief in the model
predictions. To ameliorate this, ad-hoc covariance inflation methods can be used in the prediction
step, multiplying the approximated covariance matrix with a scalar ρ > 1 or adding a scaled identity
matrix. This has the effect of increasing uncertainty in the predictions.

Sample-based approaches, such as the unscented Kalman filter (UKF) (Wan and Van Der Merwe,
2000) and the particle filter (PF) (Doucet et al., 2000), can be used if linearisation is not possible.
The UKF represents p(θn−1 | y1:n−1) through a fixed number of particles and corresponding weights
(for θn ∈ Rm, this requires 2m+ 1 particle/weight pairs) in the prediction step. These particles are
chosen to give a close approximation to nonlinear mappings of this measure and are pushed through
F(·) in the prediction step. The predicted mean m̂n and covariance Ĉn are approximated through
weighted sums of the resultant mapped particles; this procedure is at least second-order accurate. The
Gaussian assumption is made so that as with the ExKF, p(θn | y1:n−1) = N (m̂n, Ĉn), and the update
step proceeds as in (2.18).

The PF also provides an approximation to p(θn | y1:n), through a set of N particles {θ(j)
n }Nj=1 and

their corresponding weights {w(j)
n }Nj=1. The PF constructs an approximate measure pN (θn | y1:n) =∑N

j=1w
(j)
n δ

θ
(j)
n

( dθn), using an importance sampling approach (Doucet et al., 2000). Particle positions

{θ(j)
n }Nj=1 are first shifted in the prediction step and the weights {w(j)

n }Nj=1 are updated in the update
step. Different to the UKF, the PF makes no distributional assumption and can take arbitrarily many
particles: as N →∞, pN converges to the exact p(θn | y1:n).

Both the UKF and PF struggle in high dimensions. The UKF requires taking and storing a matrix
square-root of Cn which, for high-dimensional systems, is infeasible. The PF results in weight
degeneracy when N is low in comparison to the state dimension (Bengtsson et al., 2008), leading to all
but one weight approaching zero.

To circumvent these degenerations in high-dimensional systems, approaches for the nonlinear
filtering problem have been proposed in the data assimilation literature (Law et al., 2015). As covered
previously, a standard approach is the ensemble Kalman filter (EnKF) which, similar to the UKF and
PF, constructs a sample-based characterisation of the filtering posterior. Different to these approaches,
however, all particles or ensemble members have equal weights, and the ensemble is assumed to be
Gaussian distributed.

We detail the EnKF for (2.17) now. Assuming there is an ensemble with Nens members, such that
p(θn−1 | y1:n−1) = 1

Nens

∑Nens
j=1 δθ(j)

n−1

( dθn−1), then the ensemble prediction step is given by

θ̂
(i)

n = F(θ
(i)
n−1) + ξ(i)

n , ξ(i)
n ∼ N (0,Q), i = 1, . . . , Nens,

E(θ̂n) =
1

Nens

Nens∑
i=1

θ̂
(i)

n , Ĉn =
1

Nens − 1

Nens∑
i=1

(
θ̂

(i)

n − E(θ̂n)
)(

θ̂
(i)

n − E(θ̂n)
)>

,

and the update step follows

θ(i)
n = θ̂

(i)

n + ĈnH
>(HĈnH

> + R)−1(yn + ηn −Hθ̂
(i)

n ), η(i)
n ∼ N (0,Q), i = 1, . . . , Nens.
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This approach has been popular due to performing well in small-ensemble configurations and
being amenable to parallelisation (Evensen, 2003; Mandel, 2006). For small Nens relative to the state
dimension the posterior mean estimates are accurate to the true mean, however the variance estimates
may not reflect the variance of the true posterior in temporally sparse observation regimes (Law and
Stuart, 2012). Due to employing small Nens, also, spurious correlations may arise in the prediction
covariance matrix Ĉn leading to the requirement of covariance localisation. This applies an elementwise
product U� Ĉn (Houtekamer and Mitchell, 2001), with U chosen to encode physical knowledge of the
system at hand — for example, points which are at a large distance from one another should have near
zero covariance. Furthermore, as the ensemble-approximated covariance is a low-rank approximation,
there may be some under-estimation of the covariance matrix. Again, a covariance inflation can be
used to provide an ad-hoc amelioration of this, as with the ExKF. The EnKF can also be formulated in
terms of the square root of the covariance matrix (Tippett et al., 2003)13, which gives the square-root
ensemble Kalman filters. This leads to non-stochastic versions of the EnKF that do not perturb the
observations. Instead the ensemble is updated in a deterministic fashion that ensures that Kalman
update for the covariance is computed exactly (i.e., it is free of Monte Carlo error).

Additional approaches include the variational algorithms of 3DVAR (Lorenc, 1986; Lorenc et al.,
2000) and 4DVAR (Zupanski, 1997). These algorithms are so named because their respective formula-
tions lead to problems in the calculus of variations. The 3D and 4D prefixes result from these methods
being applied to problems with three spatial dimensions, as well as the incorporation of temporal
dependencies in the 4D case. 3DVAR constructs an approximation to the true filtering posterior through
treating the model prediction covariance as fixed, with Ĉn = Ĉ for all n. For the nonlinear filter this
sets p(θn |y1:n−1) ∼ N (m̂n, Ĉ), where m̂n = F(mn−1), for the prediction step. In this update step only
themean of the Gaussian distribution is updated, so thatmn = m̂n+ĈH>(HĈH>+R)−1(yn−Hm̂n).
4DVAR, which extends into the time domain, estimates the maximum-a-posteriori (MAP) point for
the smoothing posterior (for a discussion on MAP estimation in the context of inverse problems, see
Kaipio and Somersalo (2006)). The MAP estimate is the most probable point in the support of the
posterior distribution. In this case we compute

θ̂0 = argmax
θ0

p(θ0 | y1:nt).

This can be computed through standard optimisationmethods, whichmay be acceleratedwith gradient
information (see, e.g., Nocedal and Wright (2006)). If stochastic dynamics is assumed, as in (1.4), then
this is known as weak constraint 4DVAR. Deterministic dynamics gives the strong constraint 4DVAR.

2.3.2 Gaussian Processes

In order to build the statistical methodology on top of the finite element method, we require the
introduction of some notion of uncertainty for functions. InNL-statFEM, the addition of function-valued
uncertainty inside of the governing PDE enables, upon finite element discretisation, the derivation
of an SDE which can then be numerically integrated (c.f. Section 2.2) and updated with data (c.f.

13This is the scaled prediction deviations from the mean: Ĉn = XnX>n ,
Xn =

√
1

Nens−1

[
θ̂

(1)

n − E(θ̂n), . . . , θ̂
(Nens)

n − E(θ̂n)
]
.
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Section 2.3.1). To introduce this uncertainty, we use Gaussian Processes (GPs). A GP is a continuously
indexed stochastic process whose joint distributions are multivariate Gaussians. They allow for
functions to be expressed as being uncertain, instead of fixed, deterministic objects.
GPs are used for statistical regression and classification (Williams and Rasmussen, 2006), and are

common in uncertainty quantification workflows (see, e.g., Ghanem et al., 2017). They can be used
to emulate expensive physical models (Sacks et al., 1989), which then enables sensitivity analysis to
be conducted (Oakley and O’Hagan, 2004), or as a way of parameterising function-valued model
mismatch (Kennedy and O’Hagan, 2001). Due to the connection to Gaussian measure — which is a
way to define measure in infinite dimensional spaces where the classical Lebesgue measure cannot be
constructed — GPs also allow for infinite-dimensional inference to proceed via the Radon-Nikodym
derivative (Stuart, 2010, Section 6). This allows for the development of algorithms on the function
space, guaranteeing scalability.

We now introduce GPs below and state their connection to Gaussian measure. We then discuss the
inference problem for GPs, and derive the posterior GP distribution, and conclude with a discussion
on computational techniques. For a general reference to this material see, for example, Williams and
Rasmussen (2006).

Definition 8. A function ξ : D → R, where D ⊂ Rd, is a Gaussian Process (GP) if any finite number of
input locations X = (x1, . . . ,xm) gives a finite-dimensional multivariate Gaussian density over the associated
function values, i.e.

p(ξ(x1), . . . , ξ(xm)) = N (m,K),

where m ∈ Rm, K ∈ Rm×m, and K is positive semidefinite.

A GP is completely specified by its mean functionm(x) and covariance function or covariance kernel
k(x,x′), and is commonly written as ξ(x) ∼ GP(m(x), k(x,x′)). The mean function and covariance
function are related to ξ via

E[ξ(x)] = m(x),

E[(ξ(x′)−m(x))(ξ(x′)−m(x′))] = k(x,x′).
(2.19)

Therefore on the input set X we have mi = m(xi), Kij = k(xi,xj).
The covariance function is required to be positive definite, in order to define a valid covariance

matrix. Positive definiteness for the covariance function is given by the property that for any function
h(x) ∈ L1(R;R), we have ∫ ∫

h(x)k(x,x′)h(x′) dx dx′ ≥ 0. (2.20)

Some common choices of the covariance function are listed below, along with their hyperparameters.

1. Squared-exponential:

k(x,x′) = ρ2 exp

(
−‖x− x′‖22

2`2

)
,

with hyperparameters θ = (ρ, `).
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2. Matern:

k(x,x′) = ρ2 21−ν

Γ(ν)

(√
2ν‖x− x′‖2

`

)
Kν

(√
2ν‖x− x′‖2

`

)
,

with hyperparameters θ = (ν, ρ, `); ν is typically referred to as the smoothness parameter. Kν in
this case is a modified Bessel function of the second kind (Abramowitz and Stegun, 1964).

3. Periodic (defined for 1D):

k(x, x′) = ρ2 exp

(
−2 sin2(π(x− x′)/p)

`2

)
,

with hyperparameters θ = (ρ, `, p).

The choice of the covariance kernel decides the properties of the GP sample paths. Choosing the
squared-exponential kernel, for example, means that a GP with this covariance structure will have
sample paths that are C∞(D). For the Matérn kernel paths are p-times mean-square differentiable
if and only if ν > p, and choosing the periodic kernel means that paths are infinitely differentiable
and have period p. The hyperparameters θ allow for variation in the expected behaviour of sample
paths and must be chosen at the same time as the covariance function. For example, the length-scale
parameter ` encodes the correlation lengths. Large values of `mean that points further away from one
another have higher correlations, and vice-versa. Kernels can also be combined in various ways (for
example, they may be added or multiplied) and can still define valid covariance kernels.

Given that GPs provide a way to express uncertainty about functions, it is perhaps unsurprising
that GPs implicitly define a probability measure on an appropriate function space. The function space
chosen depends on the covariance function, though is not unique to the specific covariance function,
and the measure derived is a Gaussian measure. We now show that for a GP that has a covariance
function that is L2(D ×D;R), a resultant probability measure can be derived on L2(D;R). For more
detail, see Section 6 of Stuart (2010).

Example 3. Consider, without loss of generality, a mean-zero GP ξ(x) ∼ GP(0, k(x,x′)) with k(·, ·) ∈
L2(D × D;R). For any Hilbert space with inner product 〈·, ·〉, the covariance operator K has the
identity 〈ψ,Kφ〉 = E〈ψ, ξ〉〈φ, ξ〉. For L2(D;R) this inner product is

〈ψ,Kφ〉 = E
∫
ψ(x)ξ(x) dx

∫
φ(x′)ξ(x′) dx′

= E
∫ ∫

ψ(x)ξ(x)ξ(x′)φ(x′) dx′ dx

=

∫
ψ(x)

∫
k(x,x′)φ(x′) dx′ dx,

and thuswe see that theoperatorK is an integral operatorwithkernelk(·, ·), i.e. Kφ =
∫
k(x,x′)φ(x′) dx′.

Therefore on L2(D;R), the GP ξ(x) defines the Gaussian measure µ = N (0,K).

2.3.3 Inference with Gaussian Processes

Given that the GP ξ ∼ GP(0, k(x,x′)) defines a prior over an appropriate function space, the next thing
of interest is the derivation of the posterior. Oneway is to first define a finite dimensional approximation
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to this posterior through evaluating the posterior on a set of testing locations X∗ = (x1, . . . ,xnξ).
Consider the case in which data points y = (y1, . . . , yny) are observed at locations X = (x1, . . . ,xny).
Then the data generating process may be written as

yi = ξ(xi) + ηi, ηi ∼ N (0, σ2
y), η ⊥ ξ. (2.21)

The posterior at the testing locations, p(ξ | y,θ, σy), is thus given through conditioning in the joint
Gaussian: (

ξ

y

)
∼ N

(
0,

[
K∗∗ K∗

K>∗ K + σ2
yI

])
,

where K∗∗ is the nξ × nξ covariance matrix defined on the testing locations X∗; the covariance matrices
K∗ and K are defined similarly using the training locations. The posterior is

p(ξ | y,θ, σy) = N (my,Ky),

my = K∗(K + σ2
yI)−1y,

Ky = K∗∗ −K∗(K + σ2
yI)−1K>∗ .

In this case the posterior is a multivariate normal distribution, having “discretised” the GP onto the
grid X∗. The extension to the GP posterior follows from considering that the above construction holds
for any set of testing points X∗. Kanagawa et al. (2018) note that from the Kolmogorov extension
theorem (Øksendal, 2003, Theorem 2.1.5) and the definition of the GP (Definition 8), the posterior is
also a GP

p(ξ | y,θ, σy) = GP(my(x), ky(x,x
′)), (2.22)

with mean and covariance functions

my(x) = k(x,X )(K + σ2
yI)−1y,

ky(x,x
′) = k(x,x′)− k(x,X )(K + σ2

yI)−1k(X ,x′),

where the row vector k(x,X ) = k(X ,x)> = (k(x,x1), . . . , k(x,xny)).
This can be applied in scenarios in which the likelihood is degenerate (i.e., there is no noise) and

circumvents having to derive the posterior on the function space using the Gaussian reference measure.
Because GPs involve the evaluation of the function at specific points in the domain D, the appropriate
function space setting for the posterior is the reproducing kernel Hilbert space (RKHS) (Berlinet and
Thomas-Agnan, 2003) and not the Lp(D;R) spaces. The defining property of the RKHS is that the
evaluation functionals are continuous, which allow for the infinite-dimensional Bayes theorem to be
applied (Stuart, 2010, Theorem 6.31). This is not the case for the Lp(D;R) spaces.

The infinite dimensional Bayes theorem proceeds from the prior measure µ0 defined on a Banach
space X with norm ‖·‖. Data y ∈ Rny are assumed to be arriving via the observation operator
H : X → Rny a continuous operator that maps from the function space X to the data space Rny . The
data is assumed to be observed similarly to (2.21), y = H(u) + η with η ∼ N (0, σ2I). The posterior
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measure µy, is defined from the Radon-Nikodym derivative of the prior with respect to the posterior,

dµy

µ0
=

1

Z
exp

(
1

2σ2
(y −H(u))> (y −H(u))

)
,

and is therefore absolutely continuous with respect to the prior.
In practice, to derive the posterior the hyperparameters need to be either set, estimated, or

integrated over (MacKay, 1996). A popular approach is to estimate the hyperparameters through the
log marginal likelihood (Williams and Rasmussen, 2006), which is analytically tractable and given by

log p(y | θ, σy) = −1

2
y>(K + σ2

yI)−1y − 1

2
log
∣∣K + σ2

yI
∣∣− ny

2
log 2π.

Parameters are estimated through maximising this log marginal likelihood, with which we can include
a prior term for regularisation

θ∗ = argmax
θ

{log p(y | θ, σy) + log p(θ)} .

Computing log p(y | θ, σy) is the main computational bottleneck for Gaussian Processes, due to the
inversion of the covariance matrix K + σ2

yI. This requires O(n3
y) operations and O(n2

y) memory using
the Cholesky decomposition (Golub and Van Loan, 2013). There exist various approaches to scale the
GP regression problem up to high dimensions and we cover a selection of techniques here; see Liu
et al. (2020) for a review of available methods.

Structured grid methods make use of the observation locations X being regularly spaced across
D and are only applicable in this setting. A common example is circulant embedding (Dietrich and
Newsam, 1997) which — for stationary covariance functions14 — embeds the Toeplitz covariance
matrix inside of a larger circulant matrix, whose eigendecomposition can be computed using the fast
Fourier transform (FFT) (Cooley and Tukey, 1965). Another structured grid approach is when the
kernel is separable across dimensions (for a review of these methods, see Chapter 5 from Saatci, 2011),
and the grid X is expressed as a Cartesian product across these dimensions. The covariance matrix
can be written as a Kronecker product of covariance matrices on each subgrid. The full covariance
matrix thus never needs to be formed, and properties of the Kronecker product are used to speed up
computation.

Low-rank or sparse methods are also popular. These use various approximations to bring the
scaling from O(n3

y) down to O(m2ny), wherem� ny (Snelson and Ghahramani, 2006). These include
the Nÿstrom approximation (Williams and Seeger, 2001), which uses a subset of the training data to
approximate the eigenvalues and eigenfunctions of the covariance kernel, and the inducing point
methods, which construct an approximation through a set of points that lie inside D, whose location
can be learnt through variational methods (Hensman et al., 2013; Titsias, 2009). Additional techniques
are covered in Chapter 8 of Williams and Rasmussen (2006).

Finally the recent combination of iterative solvers and GPU acceleration is showing promise (Wang
et al., 2019). Conjugate gradients can be used to compute (K + σyI)−1y, with matrix-vector products
of the form (K + σyI)x being done on the GPU. This operation is highly parallelisable as entries are

14A stationary covariance function is one that can be written as k(x,x′) = κ(x− x′).

34



2.3. Bayesian Inference

row-independent, and memory limitations can be circumvented through batched (Gardner et al., 2021)
or on-the-fly computation (Charlier et al., 2021).
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Chapter 3

Statistical finite element methods

In this chapter we develop our methodology, coined NL-statFEM. We start by introducing the linear, static
statistical finite element method (statFEM), given in Girolami et al. (2021), proceeding from the governing
equations to the derived prior and posterior distributions. This is illustrated using an example elliptic PDE.
Next, our first extension of statFEM— into linear, time-evolving PDEs — is studied. In this case we develop
our approach as motivated for a generic parabolic PDE. Again, the prior distribution is derived and we discuss
the data-conditioning procedure; in this case the standard Kalman filter. We then extend this approach further,
presenting our NL-statFEM for nonlinear, time-evolving PDEs, as in Duffin et al. (2021). We arrive at the
extended and ensemble Kalman filters as the data-conditioning algorithms. We derive our NL-statFEM for a
general nonlinear, time-dependent PDE, so as to enable its application to the diverse systems seen in physical and
engineering contexts. We defer examples to Chapter 4, in which we demonstrate the method on three classical
nonlinear PDEs.

3.1 Statistical finite element methods for static problems

The statistical finite element method (statFEM) of Girolami et al. (2021) provides methodology to deal
with model misspecification, through embedding a priori uncertainty inside of a static mathematical
model. We build upon this methodology in the remainder of this thesis. As such, this section discusses
this initial contribution, with additional detail taken from the Supplement of Duffin et al. (2021).
In statFEM, FEM solutions are updated upon receipt of data within a fully Bayesian framework.
As introduced previously, FEM solves mathematical models given by PDEs, which describe the
relationships between partial derivatives of some function, under appropriate boundary conditions,
initial conditions, and forcing terms (Evans, 2010). Uncertainty may thus enter the PDE through any
or all of these terms, and may also arise due to model imperfection (Judd and Smith, 2004; Raissi et al.,
2017). In the statFEM framework, this uncertainty will be represented through modelling the PDE
coefficients and forcing as stochastic processes (Ghanem and Spanos, 2003; Gunzburger et al., 2014).

For exposition, it is assumed that the uncertainty arises through the forcing only. A Bayesian
interpretation of probability is taken (see, e.g., Jaynes, 2003), so that the uncertainty represents the
degree to which the model is thought to be correctly specified. For an example elliptic linear PDE,
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with diffusivity coefficient Λ(·) and Dirichlet boundary conditions, this can be expressed as

−∇ · (Λ∇u) = ξ,

u = 0, x ∈ ∂D,
(3.1)

u := u(x), Λ := Λ(x), ξ := ξ(x), x ∈ D ⊆ Rd. Equation (3.1) is taken as the example PDE in this
section, assuming that ∂D is smooth and that Λ ∈ L∞(D;R). It is assumed that Λ is known, however
the framework may be extended to deal with Λ also being modelled by a stochastic process.

The stochastic forcing ξ(x) ∼ GP(f(x), kθ(x,x
′)), with ξ ∈ L2(D;R), absorbs any deterministic

forcing into f 1. Note, also, that this implies that f ∈ L2(D;R). The push-forward of the GP ξ induces
a probability measure over the space of solutions to (3.1) and characterises prior belief in the model.
The covariance kernel kθ(·, ·) can be decided upon by domain experts so that the uncertainty induced
is physically sensible. For example, kθ(·, ·) can be chosen to be a Matérn covariance function to reflect
the unknown forcing having derivatives up to a known order. Throughout this thesis, the forcing is
taken to be smooth2 with a squared-exponential covariance kernel (Williams and Rasmussen, 2006,
Chapter 4)

E[ξ(x)ξ(x′)] = kθ(x,x
′) = ρ2 exp

(
− 1

2`2
‖x− x′‖2

)
, (3.2)

governed by hyperparameters θ = (ρ, `).
The prior induced by (3.1), on the function space L2(D;R), is now derived. Given the regularity

conditions on the coefficients and forcing, Equation (3.1) has a weak solution u ∈ H1
0 (D;R) which is

given by u = L−1
Λ ξ. The operatorL−1

Λ is a bounded linear operator that mapsL2(D;R) into itself (Evans,
2010) and thus u ∼ µ0(u) = N (mu, Cu). The meanmu = L−1

Λ f is the weak solution to the deterministic
elliptic problem, and the covariance operator Cu is derived from

〈ψ,Cuφ〉 =

∫
D
ψ(x)L−1

Λ KθL
−1
Λ φ(x) dx,

where [Kθφ](x) =
∫
kθ(x,x

′)φ(x′) dx′.

Proposition 1. The measure µ0 defines a Gaussian measure on L2(D;R).

Proof. We require first that mu ∈ L2(D;R). This follows from f ∈ L2(D;R) and L−1
Λ : L2(D;R) →

L2(D;R).
The covariance operator is required to be self-adjoint, positive semidefinite, and trace-class on

L2(D;R). The operators L−1
Λ and Kθ are both self-adjoint and positive. Thus 〈L−1

Λ KθL
−1
Λ ψ, φ〉 =

〈ψ,L−1
Λ KθL

−1
Λ φ〉 through repeated application of the self-adjoint property, so Cu is itself self-

adjoint. Positivity of Cu is ensured through again applying the self-adjoint property of L−1
Λ to

give 〈KθL
−1
Λ ψ,L−1

Λ ψ〉. Writing ψ̂ = L−1
Λ ψ gives 〈Kθψ̂, ψ̂〉 ≥ 0. Therefore, 〈KθL

−1
Λ ψ,L−1

Λ ψ〉 ≥ 0. To
prove that the operator is trace-class we begin with the diagonalisation of LΛ, LΛei = λiei, which

1For example, the RHS of (3.1) may be able to decomposed as f1(x) + ξ(x), ξ(x) ∼ GP(f2(x), k(x,x
′)), which for

f1 ∈ L2(D;R) is equivalent to ξ(x) ∼ GP(f1(x) + f2(x), k(x,x
′))

2For the squared-exponential kernel, GP sample paths are C∞(D;R).
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forms a countable orthonormal basis of L2(D;R). The eigenvalues satisfy (Evans, 2010, Theorem 6.5.1)

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . , λk →∞, k →∞.

The trace of Cu can be written in terms of this basis, so that

Tr
(
L−1

Λ KθL
−1
Λ

)
=

∞∑
i=1

〈L−1
Λ KθL

−1
Λ ei, ei〉.

Again, making use of LΛ being self-adjoint we write 〈L−1
Λ KθL

−1
Λ ei, ei〉 = 〈KθL

−1
Λ ei, L

−1
Λ ei〉 =

1
λ2
i
〈Kθei, ei〉. Since λi are positive and nondecreasing

Tr
(
L−1

Λ KθL
−1
Λ

)
=
∞∑
i=1

1

λ2
i

〈Kθei, ei〉 ≤
1

λ2
1

∞∑
i=1

〈Kθei, ei〉 =
1

λ2
1

Tr(Kθ) <∞.

Thus µ0 defines a Gaussian measure on L2(D;R).

The posterior measure, µy, on L2(D;R) (Stuart, 2010), is defined using the Radon-Nikodym
derivative under the condition that the posterior is absolutely continuous with respect to the prior. This
posterior measure conditions on the PDE parameters Λ and covariance hyperparameters θ. Denote by
H : L2(D;R)→ Rny the observation operator, which is assumed to be continuous and maps the PDE
variable of interest from the solution space to the data space. Assuming the data-generating process
y = Hu+η, for data y ∈ Rny , and observational noise η ∼ N (0, σ2Iny), gives the infinite-dimensional
posterior

dµy

dµ0
=

1

Z
exp

(
− 1

2σ2
(y −Hu)>(y −Hu)

)
, (3.3)

for some normalising constant Z. The posterior measure enables model deficiencies to be corrected for
by observations, synthesising a priori knowledge of the physics with observed data. However this is an
abstract mathematical object which is not able to be realised without some form of discretisation; one
such discretisation technique is now discussed.

3.1.1 The linear statFEM prior

In practice, computing the posterior requires discretisation at some stage. In statFEM this is done
before observing data, to derive a finite-dimensional prior distribution through FEM. FEMfirst requires
deriving the weak form of (3.1) which proceeds through multiplying by test functions ψ ∈ H1

0 (D;R)

and integrating over D

−
∫
D
∇ · (Λ(x)∇u(x))ψ(x) dx =

∫
D
ξ(x)ψ(x) dx,

from which the first part can be simplified through integrating by parts and recognising that the
boundary terms are zero due to Dirichlet conditions∫

D
Λ(x)∇u(x) · ∇ψ(x) dx =

∫
D
ξ(x)ψ(x) dx.
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Hence, for this example,

AΛ(u, ψ) =

∫
D

Λ(x)∇u(x) · ∇ψ(x) dx, 〈ξ, ψ〉 =

∫
D
ξ(x)ψ(x) dx,

where u ∈ H1
0 (D;R) (c.f. Section 2.1.2). The weak form relaxes derivative requirements on solutions;

first order weak derivatives and not second order strong derivatives are required for the trial functions.
The finite element mesh is given by subdividing the domain D into the triangulation Dh ⊆ D with

vertices {xj}nuj=1, where the maximal length of the sides of the triangulation is h. In this thesis, it is
assumed that the model domains do not require bespoke methods to generate the mesh Dh. Mesh
discretisations for models with complex domain geometry may lead to an additional source of model
misspecification3, which is left untreated in this work.

The first-order polynomial basis functions {φj}nuj=1 are defined on the mesh, having the property
that φj(xi) = δij and φj(x) = 0 if x ∈ ∂D. Denote by Vh ⊂ H1

0 (D;R) the span of these basis functions,
and write the approximations uh(x) =

∑nu
i=1 uiφi(x), ψh(x) =

∑nu
i=1 ψiφi(x). In the finite-dimensional

space Vh the weak form gives the linear system

nu∑
i=1

uiAΛ(φi, φj) = 〈ξ, φj〉, j = 1, . . . , nu.

Defining a Gaussian over the FEM coefficients u = (u1, . . . , unu)> ∈ Rnu ,

p(u | θ,Λ) = N (mu,Cu),

mu = A−1b, Cu = A−1GθA
−>,

where Aji = AΛ(φi, φj), bj = 〈f, φj〉. The covariance Gθ is

Gθ,ij = E[〈ξ, φi〉〈ξ, φj〉] =

∫
D
φi(x)

∫
D
kθ(x,x

′)φj(x
′) dx dx′,

to yield the statFEM prior distribution. The mean is the deterministic FEM solution, A−1b, and
the covariance is the action of the discretised PDE operator on the prior GP covariance, giving a
“physics-informed” uncertainty quantification (UQ). This unbiased measure summarises the a-priori
uncertainty associated with the FEM coefficients, as stipulated by prior modelling assumptions.

Remark. The choice of basis functions defines the discretisation. For example, if D = [0, 1] then
choosing the Fourier basis of L2([0, 1];R), {e2πikx}∞k=1, gives the spectral Galerkin method (Boyd, 2001).

The covariance can be approximated by Gθ = MKθM
>, where Mij = 〈φi, φj〉. The matrix M is

known as the mass matrix and often appears in finite element computations. This approximation can

3Misspecification, in this sense, may come from the mesh being inappropriately refined in parts of the domain where
phenomena of interest are occurring.
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be derived from

Gθ,ij =

∫
D
φi(x)

∫
D
kθ(x,x

′)φj(x
′) dx′ dx

≈
nu∑
k=1

∫
D
φi(x)

nu∑
l=1

∫
D
φk(x)kθ(xk,xl)φl(x

′)φj(x
′) dx′ dx

≈
nu∑
k=1

∫
D
φi(x)φk(x)

nu∑
l=1

∫
D
kθ(xk,xl)φl(x

′)φj(x
′) dx′ dx

=

nu∑
k=1

Mik

nu∑
l=1

Kθ,klMlj .

Discretisation of the covariance Gθ requires some care to implement as this is a 2d dimensional integral.
In general this does not give a sparse matrix; for common choices of kθ(·, ·) — such as the Matérn and
squared-exponential kernels — the resultant covariance matrix is dense. A sparsity constraint can be
imposed by assuming that the forcing is a white noise process, kθ(x,x′) = θ2δ(x− x′),

Gθ,ij =

∫
D
φi(x)

∫
D
kθ(x,x

′)φj(x
′) dx′ dx

= θ2

∫
D
φi(x)

∫
D
δ(x,x′)φj(x

′) dx′ dx

= θ2

∫
D
φi(x)φj(x) dx = θ2Mij .

Using the white noise kernel gives the mass matrix M as the covariance matrix. Covariance localisation
(see, e.g., Houtekamer and Mitchell (2001)) may also be used to enforce a sparsity constraint, which
would set entries below some threshold to zero. An alternative is our scalable approach of Chapter 5,
which makes a low-rank approximation such that Gθ ≈ LθL

>
θ , Lθ ∈ Rnu×k, with k � nu. If Gθ has a

rapidly decaying spectrum this can be very efficient.

3.1.2 The linear statFEM posterior

Observations are also assumed to be taken, following the data generating process y = Hu + η.
Instead of solving the classical forward problem of UQ (which is given by the statFEM prior), statFEM
synthesises measurements and the prior model to give a posterior distribution over the finite element
coefficients. This posterior distribution provides a probabilistic description of the belief in the system
state, conditioned on measurements and modelling assumptions.

The data y ∈ Rny are assumed to be corrupted by an independent measurement noise process,
η ∼ N (0, σ2Iny), and are observed via the linear observation operator H : Rny → Rnu . This defines
the likelihood p(y | u, σ) = N (Hu, σ2Iny), and the statFEM posterior distribution is the combination
of this likelihood with the statFEM prior

p(u | y,θ, σ,Λ) ∝ p(y | u, σ)p(u | θ,Λ)

= N (mu|y,Cu|y),
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where

mu|y = mu + C>uH>(HCuH
> + σ2Iny)

−1(y −Hmu),

Cu|y = Cu −C>uH>(HCuH
> + σ2Iny)

−1HCu.

This update is a weighted linear combination of information available from prior physical assumptions
and observed data. If multiple datasets are observed, yi = Hu + ηi, for i = 1, . . . , nobs, and the
complete dataset is y = (y1, . . . ,ynobs) ∈ Rny×nobs . Assuming that these yi are independent gives the
statFEM posterior as

p(u | y,θ, σ,Λ) = N (mu|y,Cu|y),

mu|y = Cu

(
A>G−1

θ Amu +
1

σ2

nobs∑
i=1

H>yi

)
,

C−1
u|y = A>G−1

θ A +
nobs
σ2

H>H.

In practice this may arise when a series of measurements are taken at the same sensor locations across
time, whilst retaining a static physical model.

Discussion

Similar to the classical convergence analysis of FEM solutions (c.f. Section 2.1.2), convergence rates of
the statFEM prior and posterior measures are contained in Papandreou et al. (2021). However instead
of distances between the true and approximate PDE solutions, rates of convergence in this case are
bounds on the distances between the true and discretised measures. The distance between measures
is the Wasserstein-2 distance. For two probability measures, (µ, ν), defined on the same underlying
Banach space4 X with norm ‖·‖, the Wasserstein-2 distance is

W2(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
‖x− x′‖2 γ( dx, dx′)

)1/2

,

where Γ(·, ·) is the space of probability measures that have µ and ν as the first and second marginals,
respectively (Villani, 2009). To compute these distances the statFEM prior and posterior distributions
are first derived as Gaussian processes, as opposed to the multivariate Gaussians introduced above.

Representing (3.1) in the operator form gives

LΛu(x) = ξ(x), ξ(x) ∼ GP(f(x), kθ(x,x)),

with the assumed Dirichlet boundary conditions u = 0 for x ∈ ∂D. The true prior Gaussian process is

p(u(x) | θ,Λ) ∼ GP(mu(x), ku(x,x′)),

mu(x) = L−1
Λ f(x),

ku(x,x′) = L−1
Λ,xkθ(x,x

′)L−1
Λ,x′ .

(3.4)

4The Banach structure is not necessary; one can use a metric space and the definition still holds.
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Depending on the context it is assumed that L−1
Λ is defined from the weak form (as in Section 3.2)

or from the strong form (being given from the Greens function of (3.1)). Making a finite element
discretisation gives the statFEM prior

p(uh(x) | θ,Λ) = GP(mu,h(x), ku,h(x,x′)),

mu,h(x) = Φ(x)>A−1b,

ku,h(x,x′) = Φ(x)>A−1GθA
−>Φ(x′),

Φ(x) = [φ1(x), . . . , φnu(x)] ∈ Rnu ,

(3.5)

which induces a Gaussian process from the Gaussian distribution over the FEM coefficients.
Writing out the data generating process as yi = u(xi) + ηi, ηi ∼ N (0, σ2), for observation locations

X = (x1, . . . ,xny), gives the posterior GP

p(u(x) | y,θ,Λ, σ) ∼ GP(mu|y(x), ku|y(x,x
′)),

mu|y(x) = mu(x) + ku(x,X )(Ku + σ2I)−1 (y −mu(X )) ,

ku|y(x,x
′) = ku(x,x′)− ku(x,X )(Ku + σ2I)−1ku(X ,x′),

(3.6)

for ku(x,X ) = ku(X ,x)> = (ku(x,x1), . . . , ku(x,xny))), Ku,ij = ku(xi,xj). The finite element
discretised posterior has the similar form

p(uh(x) | y,θ,Λ, σ) ∼ GP(mu|y,h(x), ku|y,h(x,x′)),

mu|y,h(x) = mu,h(x) + ku,h(x,X )(Ku,h + σ2I)−1 (y −mu,h(X )) ,

ku|y,h(x,x′) = ku,h(x,x′)− ku,h(x,X )(Ku,h + σ2I)−1ku,h(X ,x′),

(3.7)

for ku,h(x,X ) = ku,h(X ,x)> = (ku,h(x,x1), . . . , ku,h(x,xny))), Ku,h,ij = ku,h(xi,xj).
Denote by µ0 and µ0,h the Gaussian measures on L2(D;R) which are induced by (3.4) and (3.5),

respectively. Note that in this analysis it is assumed that L−1
Λ : L2(D;R) → L2(D;R). Papandreou

et al. (2021) show that on L2(D;R) the finite-dimensional statFEM prior µ0,h and the true prior µ0

have a bounded Wasserstein-2 distance W2(µ0,h, µ0) ≤ Ch2, for some C > 0. Similarly, denote by
µy and µyh as the true and discretised statFEM posterior Gaussian measures induced by (3.6) and
(3.7), respectively, on L2(D;R). The authors show that the Wasserstein-2 distance of bounded linear
functionals b : L2(D;R)→ R can again be boundedW2(b(µyh), b(µy)) ≤ C(b)h2 +O(h4) with the scale
factor C(·) independent of h. The rate of convergence in the prior measure is the same as that of
the true and discrete PDE solutions; the same rate of convergence also holds for functionals of the
posterior measure.

Error rates on the statFEM posterior distribution with and without discretisation are given
in Karvonen et al. (2022). In this case it is assumed that the observations are drawn according to a
deterministic elliptic PDE LΛũ = f̃ where there may be some mismatch between f̃ and f . Different to
Papandreou et al. (2021) the function-space setting is taken to be the Sobolev spaceHm(D;R), which is
assumed to be norm-equivalent5 to the RKHS induced via kθ(·, ·). This holds for the Matérn covariance

5On a space X , the norms ‖·‖a and ‖·‖b are defined to be equivalent if there exist positive constants C1, C2 such that
C1‖x‖a ≤ ‖x‖b ≤ C2‖x‖a for all x ∈ X .
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kernel with smoothness parameter ν, being norm-equivalent to Hν+d/2(D;R). It is assumed that
L−1

Λ : Hm(D;R)→ C2(D;R), and that f ∈ Hm(D;R), f̃ ∈ Hm(D;R) ∩ Ck(D;R), wherem > d/2. In
the absence of finite element discretisation the L2(D;R) error between the posterior mean and true
solution ũ can be bounded

E
[
‖ũ−mu|y‖

]
≤ Cn−1/2+d/(4m)

y ,

under the additional assumption of quasi-uniform data (Wendland, 2004).
Next, the posterior is discretised using finite elements as in (3.7). As previous nu basis functions

are used with degree p polynomials, to give the L2(D;R) discretised error

E
[
‖ũ−mu|y,h‖

]
≤ C(n−1/2+d/(4m)

y + σ−1n−(p+1)
u n3/2

y ).

Therefore to have the optimal rate of convergence it is desirable to choose nu such that nu =

n
(2−d/(4k))/(p+1)
y :

E
[
‖ũ−mu|y,h‖

]
≤ C(1 + σ−1)n−1/2+d/(4m)

y .

Karvonen et al. (2022) note that despite this choice of nu giving the smallest possible rate of convergence,
this may not give the smallest RHS due to the constants involved.

Hyperparameters, θ, and noise standard deviation, σ, can be fixed a priori or estimated from the
log-marginal likelihood. For the single-dataset case, the marginal likelihood is given by p(y | θ, σ,Λ) =

N
(
Hmu,HCuH

> + σ2Iny
)
, and for multiple datasets this is p(y | θ, σ,Λ) =

∏nobs
i=1 p(yi | θ, σ,Λ).

Depending on the computational budget and/or the requirement for UQ, θ may be estimated using
either optimisation (e.g. maximum marginal likelihood (Williams and Rasmussen, 2006), maximum-a-
posteriori (MAP) (Murphy, 2012)) or via sampling (e.g. MCMC (Casella and George, 1992; Chib and
Greenberg, 1995; Tierney, 1994)). In the original statFEM paper, the sampling approach is taken.

The statFEM prior provides a physically-motivated regularisation, through interpreting the prior
as an l2 regulariser with mean mu, weighted by Cu (Tarantola, 2005):

log p(u | y,θ, σ,Λ) ∝ − 1

2σ2
(y −Hu)> (y −Hu)− 1

2
(u−mu)>C−1

u (u−mu) .

Without this regularisation, estimating nu FEM coefficients from ny observations may be ill-posed if
nu � ny; the statFEM prior ensures well-posedness.

The posterior is a multivariate Gaussian due to the Gaussian prior and the Gaussian likelihood.
The Gaussian prior results from the use of a linear PDE with stochasticity in the forcing function
only. Discretisation ensures that this stochastic forcing induces a multivariate Gaussian6. Nonlinearity
would result in a non-Gaussian prior, whose distributional form depends on the underlying PDE
nonlinearity (see, e.g., Snelson et al., 2004). A non-Gaussian prior could also result from stochasticity
entering from the diffusivity function Λ or from the boundary conditions. For example if the diffusivity
parameter is modelled by a log-Gaussian process, with log Λ ∼ GP(mΛ, kΛ) (Gunzburger et al., 2014),
the prior p(u |θ) =

∫
p(u |Λ)p(Λ) dΛ and posterior p(u |y,θ, σ) =

∫
p(u |Λ,y)p(Λ) dΛ are not available

in closed form. Marginalising over Λ is required in order to fully quantify the induced uncertainty in
the model specification. Monte Carlo methods are required in order to characterise these measures,

6As linear mappings of Gaussians and GPs are also Gaussian (subject to regularity conditions on the kernel).
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3.1. Statistical finite element methods for static problems

using, for example, multilevel Monte Carlo (Cliffe et al., 2011; Teckentrup et al., 2013), quasi Monte
Carlo (Graham et al., 2011), or the more recent unadjusted Langevin algorithm (Akyildiz et al., 2022).

StatFEM shares the same foundation as the Bayesian inverse problem of determining the forcing ξ
from data y, however there is a difference in the measure of interest. In the inverse problem, this is the
posterior p(ξ | y,θ, σ,Λ), and it is assumed that u := u(ξ) where the parameter-to-data mapping is
given through pushing ξ through the PDE in Equation (3.1). The measure of interest in the statFEM
approach, however, is p(u |y,θ, σ,Λ) which integrates over the unknown forcing ξ to give the posterior
over the FEM coefficients. Depending on the inferential situation one approach may be preferred
over the other. Given the statFEM discretisation and DGP, if the estimation of ξ is of interest, then
ξ =

(
〈ξ, φ1〉, . . . , 〈ξ, φnξ〉

)
, ξ ∼ N (b,Gθ). As u = A−1ξ, the posterior is

p(ξ | y,θ, σ,Λ) = N (mξ|y,Cξ|y), (3.8)

where

mξ|y = b + G>θ H>A−>(HA−1GθA
−>H> + σ2Iny)

−1(y −HA−1b),

Cu|y = Gθ −G>θ H>A−>(HA−1GθA
−>H> + σ2Iny)

−1HA−1Gθ.

As in the statFEM problem a-priori assumptions on ξ act to regularise the otherwise ill-posed estimation
problem.

Example 4. To illustrate the conditioning procedure, the previously considered elliptic partial differ-
ential equation with random forcing is updated with data. This equation is

−∇ · (Λ(x)∇u(x)) = ξ(x),

u(x) = 0, x ∈ ∂D,
(3.9)

where the domain is the unit square, D = [0, 1]× [0, 1], so x = (x1, x2) where Λ(x) = 1 + 0.3 sin(π(x1 +

x2)), ξ(x) ∼ GP(1, θ2δ(x− x′)), with θ = 0.05.
Discretisation with finite elements gives the prior measure p(u | θ,Λ) = N (A−1b,A−1GθA

−>),
which uses a 16 × 16 cell mesh with piecewise linear polynomial basis functions, so that the state
dimension is nu = 289. A diagonal approximation to Gθ is made, setting Gθ,ii = θ2

∑
j Mij . This is

known as lumping in the FEM literature (Zienkiewicz et al., 2013).
In this example, synthetic data is used. These synthetic data are generated from Equation (3.9) with

the additional stochasticity, log Λ(x) ∼ GP(log(1 + 0.3 sin(π(x1 + x2))), kΛ(x,x′)), setting kΛ(x,x′) =

0.22 exp(−‖x−x′‖2/(2·0.22)). To generate the data,nobs = 100 stochastic PDE solutions are interpolated
onto ny = 64 observation locations. Model mismatch is given by scaling the solutions by a known
constant of 1.4, and adding on observational noise η ∼ N (0, 0.0012Iny). These data are shown in
Figure 3.1. Observations approximately cover the finite element mesh, with a value-dependent
variance: the GP’s inside of the PDE dominate the observational noise. In this case the data are not
necessarily sparsely observed, covering ≈ 22% of the total state dimension.

In computing the posterior, hyperparameters are fixed to σ = 0.001 and θ = 0.05. Owing to
the conjugate Gaussian model, the posterior is p(u | y, θ, σ,Λ) = N (mu|y,Cu|y). Results are shown

45



Chapter 3. Statistical finite element methods

Figure 3.1: Generated data for the Poisson example. Left: single dataset of the nobs = 100 datasets,
with the FEM mesh. Points marked with crosshairs are shown as a 1D slice on the figure on the left,
which are ordered according to their x1 value. The left figure shows all nobs = 100 at each location.

(a) Prior mean, mu. (b) Posterior mean, mu|y . (c) Posterior variance, diag(Cu|y).

Figure 3.2: StatFEM posterior results for the Poisson example. Left: statFEM prior mean. Centre:
statFEM posterior mean. Note that both posterior mean plots are overlaid on the FEMmesh. Right:
posterior pointwise variance field.

in Figure 3.2, which shows the statFEM prior and posterior mean (Figures 3.2a and 3.2b), and, the
posterior variance (Figure 3.2c). The posterior meanmore closely aligns with that of the data generating
process, appearing sensibly updated with observations. The posterior variance field shrinks to small
values near observation locations, growing larger where data is not observed. In comparison to the
mean the magnitude of the variance is small; given observations, the statFEM model is highly certain.

3.2 Linear, time-dependent statFEM

We now provide our first extension to the statFEM methodology, via extension to time-dependent
problems. This was first detailed in the Supplementary Information of Duffin et al. (2021). As a
motivating example, we consider the general parabolic PDE with Dirichlet boundaries and space-time
stochastic forcing. Denote byLΛ the general linear elliptic differential operator, with known parameters
Λ. Unless otherwise mentioned, Λ is implicitly conditioned on through the remainder of this chapter.
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The general parabolic equation is
∂tu+ LΛu = f + ξ,

u = 0, x ∈ ∂D,
(3.10)

where x ∈ D ⊆ Rd, t ∈ [0, T ], ξ := ξ(x, t), u := u(x, t), u : D → [0, T ]. It is assumed u(x, 0) = u0(x),
f ∈ L2(D;R), and, without loss of generality, u ∈ R. Multidimensional states u ∈ Rs are most common
and are studied in Chapters 4 and 5.

For tractability the covariance function is assumed to have the separable form

ξ(x, t) ∼ GP(0, δ(t− t′) · kθ(x,x′)), ξ(x, 0) ≡ 0, (3.11)

implying that stochastic forcing is white noise in time and spatially regular as per kθ(·, ·); for fixed
t, ξ(x, t) ∈ L2(D;R). A white noise process is assumed to write the above as a stochastic differential
equation, forced with a spatially regular Brownian motion process.

Remark. The stochastic forcing is an L2(D;R)-valued Wiener process with Gaussian process incre-
ments, i.e. ξ(x, t+ ∆t)− ξ(x, t) ∼ GP(0,∆tkθ(x,x

′)), and thus (3.10) is a function-valued stochastic
differential equation (SDE).

Multiplying by test functions ψ(x) ∈ V = H1
0 (D;R) and integrating over the problem domain D

gives the time-dependent weak form

〈∂tu, ψ〉+AΛ(u, ψ) = 〈f, ψ〉+ 〈ξ, ψ〉,

where AΛ(·, ·) : V × V → R is the bilinear form generated from LΛ.
Choosing a triangulation Dh with vertices {xj}nuj=1 discretises the domain, upon which the basis

functions {φj}nuj=1 are defined. The basis functions have φj(xi) = δij and φj(x) = 0 for x ∈ ∂D. The
finite-dimensional test and trial spaces is Vh := span{φj}nuj=1, with Vh ⊂ V . Writing out the solution as
uh(x, t) =

∑nu
i=1 ui(t)φi(x) and replacing the testing function with φj gives

〈∂tuh, φj〉+AΛ(uh, φj) = 〈f, φj〉,+〈ξ, φj〉, j = 1, . . . , nu,

implicitly defining an nu-dimensional SDE for the finite element coefficients. The Gaussian process
ξ(t) = (〈ξ, φ1〉, . . . , 〈ξ, φnu〉)> ∼ GP(0, δ(t− t′) ·Gθ) can be informally thought of as the derivative of
a Brownian motion process β(t) with diffusion matrix Gθ (Øksendal, 2003; Särkkä and Solin, 2019).
The covariance is

E[〈ξ, φi〉〈ξ, φj〉] = δ(t− t′) ·
∫
D
φi(x)

∫
D
k(x,x′)φj(x

′) dx′ dx = δ(t− t′) ·Gθ,ij ,

inheriting the spatial correlation structure from kθ(·, ·), which imbues some smoothness.
Concatenating the FEM coefficients into the vector u(t) = (u1(t), . . . , unu(t))> ∈ Rnu gives the SDE

M du + Au dt = b dt+ dβ(t),

and to discretise in time we use the notation un = (u1(n∆t), . . . unu(n∆t))
> to represent the solution
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vector at time n∆t. The explicit Euler discretisation (Hairer et al., 1993; Kloeden and Platen, 1992) is

M (un − un−1) + ∆tAun−1 = ∆tb + en−1,

where en−1 = βn − βn−1 ∼ N (0,∆tGθ). To avoid possible instabilities we also introduce the implicit
Euler

M (un − un−1) + ∆tAun = ∆tb + en−1,

and the Crank-Nicolson
M (un − un−1) + ∆tAun−1/2 = ∆tb + en−1,

with un−1/2 := (un + un−1)/2. For exposition in the rest of this section we consider only the explicit
Euler method, for which the updating equation can be written as

un = (I−∆tM
−1A)un−1 + ∆tM

−1b + M−1en−1,

which defines the conditional measure at time n to be

p(un | un−1,θ) = N
((

I−∆tM
−1A

)
un−1 + ∆tM

−1b,∆tM
−1GθM

−>
)
.

Sequentially marginalising over the uncertainty in the previous timestep defines the prior at timestep
n, p(un | θ,Λ) =

∫
p(un | un−1,θ,Λ)p( dun−1 | θ,Λ). From here on in PDE coefficients Λ are implicitly

conditioned on, writing p(un | θ,Λ) ≡ p(un | θ).

3.2.1 The linear, time-dependent posterior

Data yn ∈ Rny are observed at time n∆t on the grid xobs. To synthesise the FEM model with data
the prior distribution is updated to give a sequence of posterior distributions p(un | y1:n,θ, σ), where
y1:n = (y1, . . . ,yn). The posterior distribution describes the belief in the model given observations up
to and including the current time point and, as in the linear case, quantifies all assumed sources of
uncertainty in the model and the data generating process. This solves the filtering problem and the
posterior distribution of interest is referred as the filtering distribution or just the posterior, when the
context is clear.

These data are corrupted with independent and identically distributed (i.i.d.) noise ηn ∼
N (0, σ2Iny) independent to the model un, to give the data generating process yn = Hnun + ηn. As in
the static case, the linear observation operator Hn : Rnu → Rny maps from the computed solution grid
to the observation grid using the FEM interpolant. Statistically, this is a linear Gaussian state-space
model7 (Shumway and Stoffer, 2017), so the standard Kalman filter can be applied to obtain the
posterior distribution (Kalman, 1960).

The initial conditions are known and are described by a Dirac measure, p(u0) = δm0( du0). For
time n, the prediction step is first made, propagating uncertainty in the previous timestep to give the
prediction distribution p(un | y1:n−1,θ, σ). Data observed at time n∆t is conditioned on to give the
updated filtering distribution p(un | y1:n,θ, σ). Unless stated otherwise, GP hyperparameters θ and

7With the underlying evolution being defined from a PDE.
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3.2. Linear, time-dependent statFEM

observational noise variance σ are known.
If the previous filtering distribution is p(un−1 | y1:n−1,θ, σ) = N (mn−1|n−1,Cn−1|n−1), then for

n = 1, . . . , nt the filter proceeds as:

1. (Prediction step) Compute the predicted mean and covariance:

p(un | y1:n−1,θ, σ) = N (mn|n−1,Cn|n−1),

mn|n−1 = (I−∆tM
−1A)mn−1|n−1 + ∆tM

−1b,

Cn|n−1 = (I−∆tM
−1A)Cn−1|n−1(I−∆tM

−1A)> + ∆tM
−1GθM

−>.

2. (Update step) Update the mean and covariance with data yn:

p(un | y1:n,θ, σ) = N (mn|n,Cn|n),

mn|n = mn|n−1 + Cn|n−1H
>
n

(
HnCn|n−1H

>
n + σ2I

)−1
(yn −Hnmn|n−1),

Cn|n = Cn|n−1 −Cn|n−1H
>
n

(
HnCn|n−1H

>
n + σ2I

)−1
HnCn|n−1.

If no data is observed at time point n then only the prediction step needs to be computed as by
definition p(un | y1:n,θ, σ) = p(un | y1:n−1,θ, σ).

Discussion

First, we note the following operation counts. The above filter stores the full covariance matrix Cn|n at
each iteration, so the memory cost O(n2

u). Each iteration requires the solution of M, for which an LU
decomposition of M can be taken and stored before running the filter. Thus, solving for M−1z can be
computed in the filter with forward- and back-substitution. This procedure isO(b2nu) to factorise, and
O(bnu) to solve, for a mass matrix with bandwidth b. An alternative method lumps the mass matrix,
replacing M with the diagonal M̃ with elements M̃ii =

∑
j Mij . However, for the remainder of this

discussion we will assume that the LU approach is taken, as this is able to be generalised to implicit
discretisation schemes, which require inverting A.

In the prediction step, computing the prediction mean has the cost O(bnu), and computing the
prediction covariance, which requires matrices of the form M−1BM−>, requires O(bn2

u) operations
per timestep. Next, in the update step, Sn = HnCn|n−1H

>
n + σ2I is computed. Recalling that Hn is

(ny × nu), if we assume that Hn has O(1) entries per row then this has the cost of O(nynu). To solve
Sn, the Cholesky decomposition is used, which has cost O(n3

y/3) to form Sn = LnL
>
n , and cost O(n2

y)

to solve S−1
n z. Computing the mean update thus has the cost O(n2

y) +O(nuny), and the covariance
update has the cost O(nun

2
y) +O(n2

uny). In our experience, the main cost has been associated with
computing the products of the form M−1BM−>. In scaling up the method, the O(bn2

u) complexity of
computing this product is prohibitively expensive, as is the O(n2

u) memory requirement.
For static GP hyperparameters, θ, and noise standard deviation, σ, estimation can proceed via

MAP methods (Murphy, 2012). In this case for a single timestep n the marginal likelihood is

p(yn | y1:n−1,θ, σ) = N
(
Hmn|n−1,HCn|n−1(θ)H> + σ2Iny

)
,
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as Cn|n−1 ≡ Cn|n−1(θn). Estimation uses the complete-data marginal likelihood p(y1:nt | θ, σ) =∏nt−1
k=0 p(ynt−k | y1:(nt−k−1)), where p(y1 | y0) := p(y1), from which taking logarithms gives (up to a

proportionality constant)

log p(y1:nt | θ, σ) = −1

2

nt∑
n=1

log |Σn(θ, σ)| − 1

2

nt∑
n=1

(
yn −Hnmn|n−1

)>
Σn(θ, σ)−1

(
yn −Hnmn|n−1

)
,

where Σn(θ, σ) = HnCn|n−1(θ)H>n + σ2Iny . The MAP estimates are

(θ̂, σ̂) = argmax
(θ,σ)

{log p(y1:nt | θ, σ) + log p(θ) + log p(σ)}.

Note that each evaluation of the log-marginal likelihood requires running the filter with fixed (θ, σ) to
evaluate log p(y1:nt | θ, σ).

Alternatively we can assume the time evolving structure θ := θn, σ := σn for all n, and that θn
and σn are independent across time, i.e. p(θn | θn−1) ≡ p(θn). To estimate these hyperparameters the
prediction step can be split into two, with an additional optimisation step added in. Denote by (θ̂n, σ̂n)

the estimated hyperparameters at time n. To estimate these, for each n we first compute the prediction
mean mn|n−1. Then, (θn, σn) are estimated via

(θ̂n, σ̂n) = argmax
(θn,σn)

{log p(yn | y1:n−1,θn, θ̂1:n−1, σn, σ̂1:n−1) + log p(θn) + log p(σn)},

at each iteration n. After obtaining estimates (θ̂n, σ̂n) the prediction covariance is computed, Cn|n−1 =

Cn|n−1(θ̂n), and we complete the update step to estimate p(un | y1:n, θ̂1:n, σ̂1:n).
Knowledge of the physical problem can inform the hyperparameters θ, which can be encoded

in a prior distribution p(θ). Throughout this thesis, we have used the weakly informative priors
ρn ∼ N+(1, 12), `n ∼ N+(1, 12), and σn ∼ N+(0, 12), to reflect our a priori uncertainty. For the
optimisation routine, L-BFGS-B (Nocedal andWright, 2006) with positivity constraints, as implemented
in SciPy (Virtanen et al., 2020), has worked well in our experience.

Further discussion of this filtering approach is contained in the following section, of which the
above presented algorithm arises as a special case of the extended Kalman Filter.

3.3 Nonlinear, time-dependent statFEM

We now detail the NL-statFEM, our second extension to the original statFEM, first presented in Duffin
et al. (2021). In this case we consider a general nonlinear, time-dependent PDE with stochastic forcing
and Dirichlet boundary conditions. As previous the parameters Λ are assumed known and are
implicitly conditioned upon. Denote by LΛ and NΛ(·) the linear and nonlinear differential operators,
respectively, which comprise the dynamics; the PDE is then

∂tu+ LΛu+ FΛ(u) + f + ξ = 0,

u = g(x), x ∈ ∂D,
(3.12)
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as previous x ∈ D ⊆ Rd, t ∈ [0, T ], f := f(x) ∈ L2(D;R), u := u(x, t) and u : D × [0, T ]→ R. We fix
the initial conditions u(x, 0) = u0(x), and set ξ(x, t) ∼ GP(0, δ(t− t′) · kθ(x,x′)).

As in the previous linear cases, the NL-statFEM starts with the finite element spatial discretisation
to give a semidiscrete problem (a vector SDE), which is then discretised in time. Utilising the same
basis functions as previous, we first multiply by test functions φj ∈ Vh, recalling Vh = span{φi}nui=1. In
this case, φi(x) = g(x) for x ∈ ∂D. Integrating over the discrete problem domain Dh and making the
finite-dimensional approximation uh(x, t) =

∑nu
i=1 uh,i(t)φi(x) ∈ Vh ⊂ V yields the unsimplified weak

form
〈∂tuh, φj〉+ 〈LΛuh, φj〉+ 〈FΛ(uh), φj〉+ 〈f, φj〉+ 〈ξ, φj〉 = 0, j = 1, . . . , nu.

This implicitly defines a nonlinear coupled system of stochastic differential equations over the finite
element coefficients u(t) = (uh,1(t), . . . , uh,nu(t))>. Due to the nonlinear FΛ(·), for fixed t, the resultant
probability measure on function space is not of any known distributional form.

As in the linear case we can write this system as a nonlinear vector SDE

M du + Au dt+ F(u) dt+ b dt+ dβt = 0, (3.13)

where A ∈ Rnu×nu encodes the operator LΛ through Aji = 〈LΛφi, φj〉, F : Rnu → Rnu encodes the
action of the nonlinear FΛ through Fj(u) = 〈FΛ(uh), φj〉, and bj = 〈f, φj〉8.

Discretisation in time uses the same schemes introduced in the linear case. That is, the explicit
Euler for un := u(n∆t) is

M (un − un−1) + ∆tAun−1 + ∆tF(un−1) + ∆tb + en−1 = 0, (3.14)

in which en−1 = βn − βn−1 ∼ N (0,∆tGθ) are i.i.d. Gaussian (timestep size ∆t is the same through
the simulation). The implicit Euler is

M (un − un−1) + ∆tAun + ∆tF(un) + ∆tb + en−1 = 0, (3.15)

and the Crank-Nicolson is

M (un − un−1) + ∆tAun−1/2 + ∆tF(un−1/2) + ∆tb + en−1 = 0. (3.16)

The implicit Euler and Crank-Nicolson methods both require the solution of a nonlinear system of
equations at each timestep. This can be done through using Newton iterations, and, depending on the
problem at hand, may be too computationally expensive to consider. As an alternative, Runge-Kutta
methods can also be used, although these require some care to implement in order to ensure the
covariance is properly propagated. General combinations of implicit and explicit discretisations may
also be useful; these are known as the general IMEX family of discretisation (Ascher et al., 1995). For
example, to avoid solving a nonlinear system of equations one possibility is

M (un − un−1) + ∆tAun + ∆tF(un−1) + ∆tb + en−1 = 0.

8Depending on the forms of LΛ and FΛ(·) additional simplifications on these functionals may be possible; their derivation
is thus problem-specific.

51



Chapter 3. Statistical finite element methods

In this case nonlinear terms are handled with explicit Euler, and linear terms with implicit Euler.
This can be useful in regimes where there is weak nonlinearity, and dominant linear behaviour (e.g.
dominant diffusive behaviour) so long as the nonlinear component is not too numerically stiff (see,
e.g., Shampine and Gear, 1979; Söderlind et al., 2015). We have typically ensured stability through
employing Crank-Nicolson; for the models considered in this thesis, the overhead of having to solve
nonlinear systems of equations has been considered a reasonable tradeoff for unconditional stability.

Denote byM : Rnu ×Rnu → Rnu the deterministic PDE component of the stochastic dynamics. For
example, for Crank-Nicolson this givesM(un,un−1) = M (un − un−1) + ∆tAun−1/2 + ∆tF(un−1/2) +

∆tb. The evolution can thus be written as an nonlinear additive Gaussian model

M(un,un−1) + en−1 = 0, (3.17)

implicitly defining a prior distribution over the FEM coefficients through marginalising over the
previous timestep distribution p(un | θ) =

∫
p(un | un−1,θ)p( dun−1 | θ). This prior is not available

in closed form and two approximations are used, based on the extended Kalman filter (ExKF) and
the ensemble Kalman filter (EnKF). These are named after their filtering extensions as they form the
basis for the subsequent filtering methods (c.f. Section 3.3.1). The ExKF approach linearises about the
current solution with the Jacobian ofM(·, ·) to give a Gaussian approximation p(un | θ) ≈ N (mn,Cn).
The EnKF approach is standard Monte Carlo; we simulate en at each timestep and build an ensemble
of these simulated trajectories. Summary statistics can be computed from this ensemble.

The ExKF algorithm is now detailed. At the previous timestep t = (n−1)∆t the associatedmeasure
on the FEM coefficients is p(un−1 | θ) = N (mn−1,Cn−1). Taking a Taylor series about the solution to
M(mn,mn−1) = 0, mn, and writing the Jacobian as Jn = ∂

∂un
M(un,un−1)9 gives

M (un,un−1) =M (mn,mn−1) + Jn(un −mn) + Jn−1(un−1 −mn−1) + r(un) + en−1 = 0,

where r(un) denotes the remainder terms of second order and above. Ignoring these remainder terms
gives the prior at time n

un ∼ N (mn,Cn) ,

Cn = J−1
n

(
Jn−1Cn−1J

>
n−1 + Gθ

)
J−>n ,

via the standard affine transformation of a Gaussian random variable (see, e.g., Petersen and Pedersen,
2012). This linear approximation extends the FEM via the propagation of induced uncertainty serially
through the simulation, with the mean coinciding with the FEM solution. The covariance is given by
the action of the Jacobians on the previous timestep covariance, which will induce some error between
the true covariance and this approximation; systems with stronger nonlinearity will induce more error.

Alternatively, the EnKF (Monte Carlo) approach takes an ensemble {u[i]
n−1}

Nens
i=1 and at each timestep

draws independent samples e
[i]
n−1 ∼ N (0,∆tGθ) for i = 1, . . . , Nens. For each sampled e

[i]
n−1, the model

9This Jacobian can be computed via taking a Gateaux derivative of the weak form; see Section A.1 for a full discussion of
this. In practice this can be done by hand or through automatic differentiation (Baydin et al., 2018; Farrell et al., 2013).
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3.3. Nonlinear, time-dependent statFEM

Algorithm 1 ExKF algorithm (with parameter estimation).
for n ≤ nt do

(Prediction step)
SolveM(mn|n−1,mn−1|n−1) = 0.
Ĉn|n−1 = J−1

n

(
Jn−1Cn−1|n−1J

>
n−1

)
J−>n .

Estimate: (θ̂n, σ̂n) = argmaxθn,σn{log p(yn |y1:n−1,θn, θ̂1:n−1, σn, σ̂1:n−1)+log p(θn)+log p(σn)}.
Update Cn|n−1 = Ĉn|n−1 + ∆tJ

−1
n Gθ̂n

J−>n .
(Analysis step)
Sn = HnCn|n−1H

>
n + σ̂2

nI.
mn|n = mn|n−1 + Cn|n−1H

>
nS−1

n (yn −Hnmn|n−1).
Cn|n = Cn|n−1 −Cn|n−1H

>
nS−1

n HnCn|n−1.
end for

Algorithm 2 EnKF algorithm (with parameter estimation).
for n ≤ nt do

(Prediction step)
for i ≤ Nens do

SolveM(û
[i]
n,pred,u

[i]
n−1) = 0.

end for
Compute m̂n|n−1 and Ĉn|n−1 from {û[i]

n,pred}
Nens
i=1 .

Estimate: (θ̂n, σ̂n) = argmaxθn,σn{log p(yn |y1:n−1,θn, θ̂1:n−1, σn, σ̂1:n−1)+log p(θn)+log p(σn)}.
for i ≤ Nens do

SolveM(u
[i]
n,pred,u

[i]
n−1) + e

[i]
n−1 = 0.

end for
Compute mn|n−1 and Cn|n−1 from {u[i]

n,pred}
Nens
i=1 .

Let Sn = HnCn|n−1H
>
n + σ̂2

nI.
(Analysis step)
for i ≤ Nens do u

[i]
n = u

[i]
n,pred + Cn|n−1H

>
nS−1

n

(
yn + η

[i]
n −Hnu

[i]
n,pred

)
end for

end for

is solved for u
[i]
n

M
(
u[i]
n ,u

[i]
n−1

)
+ e

[i]
n−1 = 0, i = 1, . . . , Nens.

The associated approximate measure p(un | θ) = 1
Nens

∑Nens
i=1 δ

u
[i]
n

( dun) can be empirically summarised
by its first and second centred moments

E[un] =
1

Nens

Nens∑
i=1

u[i]
n ,

cov(un) =
1

Nens − 1

Nens∑
i=1

(
u[i]
n − E(un)

)(
u[i]
n − E(un)

)>
.

To ensure that cov(un) is not rank-deficient we require Nens ≥ nu + 1. The EnKF trajectories are those
given by the Euler-Maruyama simulation of the SDE (Kloeden and Platen, 1992) using the three
discretisations given above, in Equations (3.14), (3.15), and (3.16) .
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Chapter 3. Statistical finite element methods

3.3.1 The nonlinear, time-dependent posterior

These schemes form the basis for computing the filtering posterior p(un | y1:n,θ, σ), describing the
belief in the FEM solution conditioned on data observed up to and including time n∆t. The data
generating process is the same as for the linear case, yn = Hnun + ηn. Data yn ∈ Rny is observed via
Hn : Rnu → Rny , the observation operator that maps from the FEM solution mesh to the observed
points xobs. Observation noise is Gaussian, ηn ∼ N (0, σ2I), and thus so too is the likelihood
p(yn | un, σ) = N (Hnun, σ

2I).
The following procedure we describe is a generic nonlinear filtering algorithm which makes the

Gaussian assumption after the prediction step; both the ExKF and EnKF approaches are described
fully in Algorithms 1 and 2. For the initial presentation, we assume that hyperparameters, θ, and noise
standard deviation, σ, are known. As in the linear case these parameters may also be estimated, which
is discussed after the algorithm presentation.

At time n assume that the measure on the previous time is

p(un−1 | y1:n−1,θ, σ) = N (mn−1|n−1,Cn−1|n−1).

Proceed as follows for n = 1, . . . , nt:

1. Compute the prediction distribution:

p(un | y1:n−1,θ, σ) =

∫
p(un | un−1,θ)p( dun−1 | y1:n−1,θ, σ)

≈ N (mn|n−1,Cn|n−1).

2. Complete the analysis step:

p(un | y1:n,θ, σ) ∝ p(yn | un, σ)p(un | y1:n−1,θ, σ)

= N (mn|n,Cn|n).

The prior p(un | θ) is recovered if only the prediction step (step 1), is completed at each iteration.
In this case the algorithm reduces to those given in the subsection above.

As in the linear case the hyperparameters may be set to the MAP estimates (Murphy, 2012). In
this case the exact marginal likelihood has no tractable form and the Gaussian approximation is
constructed using the ExKF linearisation:

p(yn | y1:n−1,θ, σ) = N (Hnm̂n|n−1,HnĈn|n−1H
>
n + ∆tHnĜn(θ)H>n + σ2

nIny),

in which Ĝn(θ) = J−1
n GθJ

−>
n ; for definitions of m̂n|n−1 and Ĉn|n−1 we refer to Algorithms 1 and 2.

Using this the complete-data likelihood can be computed (up to a normalising constant)

p(y1:nt | θ, σ) = −1

2

nt∑
n=1

log |Σn(θ, σ)| − 1

2

nt∑
n=1

(
yn −Hnm̂n|n−1

)>
Σn(θ, σ)−1

(
yn −Hnm̂n|n−1

)
,

where Σn(θ, σ) = HnĈn|n−1H
>
n + ∆tHnĜn(θ)H>n + σ2Iny . This, again, requires running the filter up
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3.3. Nonlinear, time-dependent statFEM

to timestep nt to compute it. If no temporal evolution is thought to occur on the hyperparameters,
then they can be estimated from this complete-data likelihood.

If the parameters are assumed to be time-evolving, then we write (θ, σ) := (θn, σn), with (θn, σn)

independent across time. As in the linear case, to estimate (θn, σn) we modify the algorithms by
splitting the prediction step in two, adding an optimisation step in between. If the measure on the
previous timestep is given by p(un−1 | y1:n−1, θ̂1:n−1, σ̂1:n−1) = N (mn−1,Cn−1), then the tentative
prediction step, which predicts the mean and covariance using θ̂n−1, is given by

p(un | y1:n−1, θ̂1:n−1, σ̂1:n−1) =

∫
p(un | un−1)p( dun−1 | y1:n−1, θ̂1:n−1, σ̂1:n−1)

≈ N (mn|n−1, Ĉn|n−1),

where m̂n|n−1 and Ĉn|n−1 are defined in Algorithms 1 and 2 for the ExFF and EnKF methods,
respectively. The approximate marginal likelihood is

p(yn | y1:n−1,θn, θ̂1:n−1, σn, σ̂1:n−1) = N (Hnm̂n|n−1,HnĈn|n−1H
>
n + ∆tHnĜ(θn)H>n + σ2

nIny)

and the hyperparameters (θ̂n, σ̂n) are then estimated, using the log-posterior:

(θ̂n, σ̂n) = argmax
(θn,σn)

{log p(yn | y1:n−1,θn, θ̂1:n−1, σn, σ̂1:n−1) + log p(θn) + log p(σn)}.

After obtaining the MAP estimates, the full prediction step can be done,

p(un | y1:n−1, θ̂1:n, σ̂1:n−1) =

∫
p(un | un−1, θ̂n)p( dun−1 | y1:n−1, θ̂1:n−1, σ̂1:n−1)

≈ N (mn|n−1,Cn|n−1),

and the update step remains the same, to give p(un | y1:n, θ̂1:n, σ̂1:n). As in the linear case optimisation
uses L-BFGS-B (Nocedal and Wright, 2006), with starting points set to the previous estimates
(θ̂n−1, σ̂n−1). Unless otherwise specified, weakly informative truncated Gaussian priors are used:
ρn ∼ N+(1, 12), `n ∼ N+(1, 12), and σn ∼ N+(0, 12).

Discussion

In what follows, operation counts for the presented algorithms are discussed and some notes on
possible points of interest on NL-statFEM are included. These pertain to potential issues that may
arise for practitioners. When giving the operation counts, the cost associated with completing a single
model solve assumed to be O(M) operations, and the Jacobian is assumed to be a sparse matrix with
bandwidth b. Note also that the hyperparameters are fixed and we assume that ny < nu, as is the
casewhen the number of sensor locations, for example, is small in comparison to the finite elementmesh.

ExKF: The total number of operations for the ExKF is similar to the number of operations required
for the standard Kalman filter, with the mass matrix solves of the linear case being replaced with
Jacobian solves. The prediction step for the mean has the cost of O(M), and for the covariance this is
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Chapter 3. Statistical finite element methods

O(b2nu) +O(bn2
u) (for factorisation and forward- and back-substitution, respectively). The updating

step requires O(nynu) operations to form Sn = HnCn|n−1H
>
n + σ2Iny , and O(n3

y/3) operations to
compute Sn = LnL

>
n . Using this factorisation, computing the mean update is O(n2

y) +O(nuny), and
the covariance update is O(nun

2
y) +O(n2

uny).

EnKF: The covariance matrix is represented through the mean perturbations (Mandel, 2006)

Cn = EnE
>
n , En =

1√
Nens − 1

[
u[1]
n − E[un], . . . ,u[Nens]

n − E[un]
]
∈ Rnu×Nens ,

which avoids having to store and manipulate the dense Cn. The prediction step isO(NensM), however
this can be parallelised in order to save compute time, as each prediction step is conditionally indepen-
dent. The computation of HEn and HUn, where Un = [u

[1]
n , . . . ,u

[Nens]
n ], are each O(Nensny). Then

Sn = HEn(HEn)> + σnIny is computed, which is O(n2
yNens). Again this requires O(n3

y/3) operations
to factorise Sn = LnL

>
n . Having the Cholesky factor, solving ỹ

[i]
n = S−1

n

(
yn −Hun + η

[i]
n

)
is O(n2

y)

and computing u
[i]
n + En(HEn)>ỹ

[i]
n is O(Nensnu) +O(Nensny). Completing this for the full ensemble

gives the total complexity O(Nensn
2
y) +O(Nens

2nu) +O(Nens
2ny).

Note that Rn forms a low-rank square-root of the covariance matrix, estimated from the ensemble.
As we may have Nens < nu, spurious correlations can arise between model variables, which may be
physically insensible (for example, correlations between variables which are substantially distanced
from one another). This can be offset using covariance localisation (Houtekamer and Mitchell, 2001).

For a linear model, the ExKF approach of Algorithm 1 gives the standard Kalman filter of the
previous section (as ∂uAu = A). The discretised linear PDE operator is replaced with the tangent
linear PDE operator, to give similar updating equations. The ExKF approach may be preferred when
working with code than can automatically compute the requisite Jacobian matrix without manual
user intervention. When working with models for which the Jacobian matrix cannot be computed,
then the EnKF may be preferred. Also, in scenarios in which the posterior mean mn|n is the main
quantity of interest, then the EnKF may be more efficient due to being able to use small ensemble sizes
Nens � nu (Houtekamer and Mitchell, 1998). This trades off efficient estimation of mn|n for possibly
inaccurate UQ (Law and Stuart, 2012).

Finally, we note the following bibliographic details. As it stands, ourwork is the onlymethodological
extension of the initial statFEM of Girolami et al. (2021). However, there has been additional theoretical
work for the static case, giving various guarantees on the derived measures (see Papandreou et al.
(2021) and Karvonen et al. (2022), which was briefly mentioned in Section 3.1). Additionally, an
application of statFEM to digital railway monitoring is given in Febrianto et al. (2021), and the
combination of statFEMwith Langevin samplers is given in Akyildiz et al. (2022). As noted throughout
the previous chapters, our scalable extension to NL-statFEM is given in Duffin et al. (2022), where we
detail applications to reaction-diffusion systems. This is the focus of Chapter 5.
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Chapter 4

Applying NL-statFEM to address
misspecification

In this chapter we investigate the application of our NL-statFEM to a variety of 1D nonlinear, time-dependent
systems, studying the data assimilation procedure for Burgers equation, the Kuramoto-Sivashinsky (KS) equation,
and the Korteweg-de Vries (KdV) equation. Synthetic and experimental data is used. We gradually increase the
severity of model misspecification, proceeding through:

1. Unknown stochastic forcing (Burgers);

2. Misspecified linear viscosity in a weakly nonlinear system (Burgers);

3. Misspecified linear viscosity in a highly nonlinear system (KS);

4. Misspecified nonlinear advection in a weakly nonlinear system (KdV);

5. Experimental data assimilation in a weakly nonlinear system (KdV).

In this chapter simulations are run with the ExKF only; results using the EnKF are shown in Appendix A.2.
Results, first presented in Duffin et al. (2021), show that conditioning on data improves the model accuracy.

This is verified through computing the relative error on the NL-statFEM posterior mean, the root mean square
error, the Kalman gain norm, and a signal-to-noise ratio. The posterior mean is able to accurately recover the data
generating process, and, where appropriate, hyperparameter estimates appear to coincide with the true values.
Code to replicate all results is available at https://github.com/connor-duffin/statkdv-paper.

4.1 Burgers equation

Burgers equation is a nonlinear PDE that describes the balance of nonlinear steepening and viscous
damping. It is named after Burgers (1948), who initially studied the equation in the context of
turbulence modelling. The Burgers equation can be derived through making simplifications inside
of the incompressible Navier-Stokes equations, which, ignoring boundary and initial conditions, are
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Chapter 4. Applying NL-statFEM to address misspecification

given by

ut + u · ∇u = −∇p + ν∇2u + f , (4.1)

∇ · u = 0, (4.2)

u := u(x, t), x ∈ D ⊂ R3, t ∈ R+,

for u(x1, x2, x3, t) := (u(x1, x2, x3, t), v(x1, x2, x3, t), w(x1, x2, x3, t)), p := p(x1, x2, x3, t). The scalar
coefficient ν is the kinematic viscosity which parameterises the strength of viscous effects. The velocity
field inside of D is given by u, and the pressure field is p. These equations can be derived from the
conservation of momentum (giving (4.1)) and the conservation of mass (giving (4.2)), in combination
with the assumption of incompressibility and the fluid being Newtonian.

Writing out the equations in terms of the scalar velocity components gives

ut + uux + vuy + wuz = −px + ν(uxx + uyy + uzz),

vt + uvx + vvy + wvz = −py + ν(vxx + vyy + vzz),

wt + uwx + vwy + wwz = −pz + ν(wxx + wyy + wzz) + g,

ux + uy + uz = 0,

where g = 9.81ms−2 is the acceleration due to gravity. Ignoring the pressure terms, gravitational
acceleration, and the incompressibility condition gives the 1D systemut + uux = νuxx,

u := u(x, t), x ∈ R, t ∈ R+,
(4.3)

describing the balance of nonlinear advection uux and damping νuxx. This is the Burgers equation.
Through this simplification, the chaotic effects seen in highly turbulent regimes of the Navier-Stokes

equations (i.e. high Reynolds number flow) are not present. This enables the study of nonlinearity
and viscosity in a simplified context, where analytical solutions are available through the Hopf-
Cole transformation (Cole, 1951; Hopf, 1950). The Hopf-Cole transformation makes the substitution
u = −2νûx/û, which then gives the heat equation for û over (x, t) ∈ R× R+

ût = νuxx, û := û(x, t), u(x, 0) = u0(x).

Solving via the Fourier transform gives (Debnath, 2012)

u(x, t) := −2ν ∂x log

(
(4πνt)−1/2

∫
exp

[
−(x− x′)2

4νt
− 1

2ν

∫ x′

0
u0(x′′) dx′′

]
dx′

)
. (4.4)

Strong solutions to the linear heat equation can be mapped via (4.4) to nonlinear Burgers equation
solutions. This motivates that there is some reduction in the degree of nonlinearity present, through
using a Burgers model in lieu of Navier-Stokes.

For ν > 0 this is a dissipative system due to the viscosity term. The inviscid Burgers equation
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Figure 4.1: Burgers prior results. Left: ExKF estimated prior vs. MC estimated prior, shown with
estimated means and 95% credible intervals. Right: MC estimate of the prior under uncertainty
refinement, shown with the deterministic FEM solution and the respective 95% credible intervals.

is obtained if ν = 0. This is a scalar conservation law, having the conservative form ut + (u2)x/2 =

0. Solutions to the inviscid equation develop shocks, and can be studied using the method of
characteristics (Strauss, 2007). It is a common model for traffic flow; in this scenario, u is the traffic
density, being, for example, cars per unit length.

In this subsection we study the viscous Burgers’ equation on a finite spatiotemporal domain, given
by 

ut + uux − νuxx = 0,

u := u(x, t), x ∈ [0, 1], t ∈ [0, T ],

u(0, t) = u(1, t) = 0,

u(x, 0) = sin(2πx).

(4.5)

In this we take the interpretation that u(x, t) is the velocity of some fluid flow, so that u has the
dimensions (length)/(time). The kinematic viscosity coefficient ν has the dimension (length)2/(time),
and parameterises the strength of viscous effects.

A statistical augmentation of (4.5) is

ut + uux − νuxx = ξ,

ξ := ξ(x, t) ∼ GP(0, δ(t− t′) · kθ(x, x′)),
(4.6)

and retaining the boundary and initial conditions of (4.5), this is the system we consider in the
rest of this section. We use the squared-exponential structure of Equation (3.2), with kθ(x, x′) =

ρ2 exp(−‖x− x′‖2/(2`2)), so that θ = (ρ, `).
The remainder of this section investigates the application of NL-statFEM to compute the posterior

distribution p(un | y1:n, θ̂1:n, σ̂1:n), for two cases with synthetic data. The first is a sanity check on the
parameter estimation process, with data simulated from (4.6). Hyperparameters are recovered and
the NL-statFEM posterior mean provides a sensible estimate of the data generating process (DGP).
The second considers misspecification coming from the kinematic viscosity ν, with the NL-statFEM
dynamic model being underdamped in comparison to the DGP. In this case data is simulated from the
deterministic Equation (4.5), with synthetic observation noise added. In this example we introduce
various verification quantities that are used to check filter performance.
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Chapter 4. Applying NL-statFEM to address misspecification

4.1.1 Discretisation

First the domain D = [0, 1] is discretised into the mesh with nodes xi = ih, for i = 0, . . . , nc such
nch = 1. We refer to nc as the number of finite element cells in the mesh, with the finite dimensional set
of basis functions V 1

h (D) = span{φi(x)}nui=1 being defined such that φi(xj) = δij . These basis functions
are piecewise linear polynomials. Next, writing uh(x, t) =

∑nu
i=1 ui(t)φi(x), and substitute into the

weak form
〈∂tuh, φj〉+ 〈uh∂xuh, φj〉+ ν〈∂xuh, ∂xφj〉 = 〈ξ, φj〉, j = 1, . . . nu.

For time discretisation, we use implicit Euler to give the updating equation, where unh = uh(x, n∆t),

〈unh − un−1
h , φj〉+ ∆t〈unh∂xunh, φj〉+ ν∆t〈∂xunh, ∂xφj〉 = 〈∆ξ, φj〉, j = 1, . . . nu,

where ∆ξ ∼ GP(0,∆tkθ(x, x
′)). This defines the updating rule for the finite element coefficients

un = (u1(n∆t), . . . , unu(n∆t))
>. This discretisation is implemented in Fenics (Logg et al., 2012), and

for the numerics we use the default FenicsNewton solver, which solves the linearised system using
the LU decomposition. Convergence is typically reached in < 5 Newton iterations.

4.1.2 Example I: estimating hyperparameters

In this example, we set ν = 0.01, and we numerically integrate the Burgers equation up to t = 4, using,
for the finite element discretisation, nc = 200 cells, and a timestep of ∆t = 0.02.

First, before showing the posterior, in Figure 4.1 we plot the estimated prior p(un | θ) at the final
simulation time t = 4. Prior estimates obtained using the ExKF method and the EnKF1 method are
compared in Figure 4.1 (left). In this case we set (ρn, `n) = (0.01, 0.1). The ExKF prior mean coincides
with the deterministic FEM solution, and the EnKF mean appears slightly dampened in comparison.
The ExKF 95% credible intervals are sharply peaked about the steepened central feature, due to the
large gradients seen at this point. The EnKF 95% credible intervals also inflate about this region of
high gradient but are more spatially diffuse. In this instance, repeated application of the tangent
linear covariance approximation results in inaccurate UQ. The EnKF approximation is again shown in
Figure 4.1 (right), for three levels of prior uncertainty, ρn ∈ {10−2, 5× 10−3, 10−3}. As ρn decreases,
the uncertainty shrinks about the known FEM solution. This hyperparameter acts as a measure of the
a priori accuracy of the model predictions.

For the posterior, data are simulated using (4.6) as the DGP, with (ρn, `n) = (0.05, 0.1), for all n.
Synthetic data yn are given by subsampling the resultant finite element coefficients on the subgrid
xobs, with ny = 101. Synthetic noise is also added, which has σn = 0.01. As in the previous section,
the DGP is

yn = Hun + ηn, ηn ∼ N (0, σnIny).

We compute the posterior p(un |y1:n, θ̂1:n, σ̂1:n), using the ExKF, fixing `n = 0.1 and estimating (ρn, σn),
using the MAP estimation method, assuming that ρn and σn are respectively i.i.d. for all times. We use
the weakly informative truncated Gaussian prior distributions p(ρn) ∼ N+(1, 12), p(σn) ∼ N+(0, 12),

1Recall that the EnKF for the prior is the Euler-Maruyama discretisation (Kloeden and Platen, 1992), which gives a Monte
Carlo approximation.
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Figure 4.2: Burgers example I results.
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Figure 4.3: Burgers example I results: hyperparameter estimation.

reflecting that a prioriwe do not have information available on these parameters.
Figure 4.2 shows the ExKF results. As a first measure of filter performance we introduce the relative

error in the l2 norm, ‖·‖2. For a NL-statFEM model with mean mn this is ‖mn − un,DGP‖2/‖un,DGP‖2,
providing a verification of the accuracy of the posterior mean. Figure 4.2a shows that conditioning
on data improves the relative error. Without conditioning on data errors accumulate over time,
which is seen in the prior. This is perhaps unsurprising given that the accumulation of stochastic
perturbations is what results in model mismatch. For the posterior mean, the relative error seems to
increase slightly as the time increases, hovering at ≈ 1%. A visual check of this accuracy is provided
in Figure 4.2b, which plots the posterior mean mn|n and 95% credible intervals with the data and
DGP. The mean visually provides a reasonable approximation to the underlying DGP and appears to
effectively “denoise” the data.

Parameter estimates (ρ̂n, σ̂n) are shown in Figure 4.3 and appear accurate. The GP variance
hyperparameter is occasionally underestimated (Figure 4.3a), implying that at these particular time
points the observed prediction mean Hmn|n−1 is close to the data yn. Noise estimates (Figure 4.3b)
are stable and show that in this case NL-statFEM is able to separate signal from noise.
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(d) Forecast Kalman gain norm.

Figure 4.4: Burgers example II results: verification quantities.

4.1.3 Example II: mismatched viscosity

In this example data yn are generated by taking the deterministic (4.5) as the DGP, with damping set
to ν = 0.01. All discretisations are the same as in the previous, and we integrate up to t = 5. Data is
subsampled on a grid with ny = 52, to give the observed values yn. Simulated observational error is
also added on, with σn = 0.01. The underlying NL-statFEM model induces model mismatch through
setting ν = 0.001 in (4.6), so the model is misspecified due to incorrectly specified damping. We use
the ExKF to compute the posterior p(un | y1:n, θ̂1:n, σ̂1:n), estimating (ρn, σn) at each time using MAP
estimation. Again we fix ` = 0.1 and retain the priors of the previous subsection.

Verification quantities are shown in Figure 4.4. In terms of the relative error (Figure 4.4a), the
posterior error increases initially but is always enveloped by the prior error. After t ≈ 1.5, the error
begins to decrease and by t ≈ 3 the error reaches a stable value of ≈ 0.1; incorporating data corrects
for coefficient misspecification. In terms of the forecast root mean square error (RMSE, Figure 4.4b)

RMSEn =

√
‖yn −Hmn|n−1‖22

ny
,

the filter reaches the known value of the standard deviation (σn = 0.01) as the filter enters the stable
filtering configuration at t ≈ 3.0. These results concur with parameter estimates (Figure 4.5), which
also stabilise at t ≈ 3.0.

62



4.1. Burgers equation

Figure 4.5: Burgers example II: estimated hyperparameters.

Figure 4.6: Burgers example II results. Top row: posterior means, 95% credible intervals, data. Bottom
row: covariance matrices Cn|n.

Also plotted is an estimated signal-to-noise ratio (Figure 4.4c)

SNRn =
‖var(Hun)‖2
‖var(yn)‖2

,

as well as the norm of the Kalman gain matrix (Figure 4.4d),

‖Cn|n−1H
>
(
HCn|n−1H

> + σ2
nI
)−1
‖2.

These quantities qualitatively accord with one another and suggest that where the forecast RMSE is
higher, the correction (as measured by the magnitude of the Kalman gain) is smaller. Again, after
t ≈ 3, these quantities reach stable configurations.

With the parameter estimates in Figure 4.5, these results indicate that where the noise standard
deviation σn is overestimated, the increased measurement uncertainty results in smaller corrections as
measured by the Kalman gain norm. In these instances, NL-statFEM is not able to recognise the model
error and instead treats this as noise. Unsurprisingly, the larger noise standard deviation estimates at
these points results in smaller signal-to-noise ratios. Upon the noise being accurately estimated the
relative error and RMSE both shrink to what appear to be asymptotic values.
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Chapter 4. Applying NL-statFEM to address misspecification

Shown in Figure 4.6 (top), the estimated posterior means provide a reasonable approximation to
the underlying DGP. Up to t ≈ 3.0, the means retain the highly steepened feature of the assumed
model, which arises due to the incorrect model specification of more dominant nonlinear effects. After
t ≈ 3.0, the data is seen to have corrected for this misspecification, resulting in posterior means that
accord with the DGP. This then results in the covariance structure (Figure 4.6, bottom) changing from a
highly localised region about the steepened front, to a more spatially uniform pattern by the end time
of the simulation. Note also that we do not observe the same increases in the 95% credible intervals as
we do in the prior (c.f. Figure 4.1); in this case conditioning on data refines the uncertainty.

4.2 The Kuramoto Sivashinsky equation

The Kuramoto-Sivashinsky (KS) equation is a chaotic, biharmonic PDE that is used to model pattern
formation in a variety of physical contexts. Kuramoto (Kuramoto, 1978; Kuramoto and Tsuzuki, 1975,
1976) derived the equation in the context of chemical reaction kinetics, and, in parallel, Sivashin-
sky (Michelson and Sivashinsky, 1977; Sivashinsky, 1977, 1980) derived the equation in the study of
diffusive instabilities in laminar flame fronts. The equation was also derived in Benney (1966a), in the
context of liquid films flowing down an inclined plane. The KS equation is given by

ut + uxx + µuxxxx + 1
2u

2
x = 0,

u := u(x, t), x ∈ [0, L], t ∈ [0, T ],

u(x, 0) = u0(x), u(x, t) = u(x+ L, t).

(4.7)

Alternatively, the KS equation can be specified in terms of v = ux, which gives a PDE with similar
nonlinearity to the Burgers and Navier-Stokes equations

vt + vxx + µvxxxx + vvx = 0. (4.8)

This is sometimes referred to as KS being in “derivative form” (Collet et al., 1993). The KS equation
defines a dissipative dynamical system whose solutions are contained in an absorbing ball as t→∞.
Nicolaenko et al. (1985) show that as limt→∞‖v‖ ≤ CL5/2 for some C > 0. The KS equation also
displays finite-dimensional dynamics, with the resultant inertial manifold dimension di being bounded
by di ≤ CL3.75 + 1 (Foias et al., 1988; Hyman and Nicolaenko, 1986).

The coefficient µ parameterises the strength of the elasticity term uxxxx. The dimensionless
parameter L̃ = L/(2π

√
µ) is taken as the bifurcation parameter (Hyman and Nicolaenko, 1986). As

L̃ increases the KS equation solutions transition to spatiotemporal chaos. The transition to chaos is
marked by alternating windows of laminar behaviour — where one solution is globally attracting —
and oscillatory or chaotic behaviour. Globally attracting solutions at these regions of laminar behaviour
appear to increase linearly in the number of dominant modes. After L̃ & 5.415 spatiotemporal chaos
is seen, which is the situation that will be studied when considering the NL-statFEM augmentation
of (4.7).

This transition to chaos can be analysed through studying themodes of (4.7). This proceeds through
expanding u(x, t) =

∑∞
k=1 ûk(t) exp(2πikx/L)/

√
L. The Fourier basis {exp(2πikx/L)/

√
L}∞k=0 forms
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4.2. The Kuramoto Sivashinsky equation

an orthonormal basis of the L-periodic functions in L2([0, L];R). Making the substitution into (4.7)
and setting µ = 1 admits the coupled system of ODEs over the Fourier coefficients

∂tûj =

(
2πj

L

)2

ûj −
(

2πj

L

)4

ûj +
1

2
√
L

(
2π

L

)2∑
k

ûkûj−kk(j − k). (4.9)

This equation provides some insight into how each term contributes to the dynamics. The second-order
term uxx increases the energy on the lower order modes whilst on the higher order modes, the uxxxx
term dampens. The nonlinear term u2

x acts to transfer energy between modes. The balance between
this damping and energy transfer, as parameterised by the domain length L and damping µ, thus
controls the dynamical regime of the model. As L increases the damping shifts to higher order modes,
allowing the lower order modes to have a greater effect.

We choose to study this PDE due to chaotic behaviour being present in a scalar 1D system. To study
chaos in other PDEs, dimensionality and complexity need to be increased— for example, Navier-Stokes
requires at least 2D model domains, and requires solving over both velocity and pressure fields. This
requires computational development which is beyond the scope of this chapter. Also, different to
the Burgers examples of the previous section, KS solutions do not exhibit drastic dissipation in the
timescales that we study in this chapter and are qualitatively more oscillatory than the previous
examples.

In this section we consider the 1D stochastic KS equation in derivative form, given by
ut + uux + νuxx + uxxxx = ξ,

u := u(x, t), x ∈ [0, 32π], t ∈ [0, 100],

u(x, 0) = u0(x), u(0, t) = u(32π, t),

(4.10)

where ξ(x, t) ∼ GP(0, δ(t − t′) · kθ(x, x′)), with kθ(·, ·) set as previous. We study the efficacy of
NL-statFEM in assimilating data in a highly nonlinear dynamical system with model misspecification.
As in the previous subsection, misspecification arises from an incorrect viscosity coefficient. We show
that NL-statFEM is able to appropriately assimilate data, providing small (≈ 1%) relative errors and
stable hyperparameter estimates.

4.2.1 Discretisation

To get the weak form we multiply by a test function v ∈ V , and integrate by parts. We discretise in
time, writing un(x, t) = u(x, n∆t), to give the implicit Euler semi-discrete (time-discretised) weak form

〈un − un−1, v〉+ ∆t〈un∂xun, v〉 −∆tν〈∂xun, ∂xv〉 −∆t〈∂xwn, ∂xv〉 = 〈∆ξn, v〉,

−〈∂xun, ∂xv〉 − 〈wn, v〉 = 〈∆ξn, v〉, ∀v ∈ V.
(4.11)

where ∆ξn ∼ GP(0,∆tkθ(x, x
′)). Note that all boundary terms disappear due to periodic boundaries.

As in Burgers we discretise the domain D = [0, 32π] into the mesh with nodes xi = ih, for i = 0, . . . , nc

such that nch = 32π. In this case we set uh(x, t) =
∑nu

i=1 ui(t)φi(x) ∈ Vh, where Vh = span{φi(x)}nui=1,
for the piecewise linear polynomial basis functions. This expansion is defined similarly for the vh(x, t)

65



Chapter 4. Applying NL-statFEM to address misspecification

and wh(x, t) and gives

〈unh − un−1
h , φj〉+ ∆t〈unh∂xunh, φj〉 −∆tν〈∂xunh, ∂xφj〉 −∆t〈∂xwnh , ∂xφj〉 = 〈∆ξn, φj〉,

−〈∂xunh, ∂xφj〉 − 〈wnh , φj〉 = 〈∆ξn, φj〉, j = 1, . . . nu,

(4.12)
implicitly defining the updating method for un = (u1(n∆t), . . . , unu(n∆t))

>. Instead of using higher-
order basis functions we double the state dimension to account for the biharmonic term. Fenics is
again used to implement the discretisation, with Newtons method to solve the nonlinear system and
the LU decomposition to solve the inner linear system. In practice, we also set nc = 512 and ∆t = 0.02.

4.2.2 Example: mismatched viscosity

Data is generated according to the deterministic (4.8). In this case we set ν = 0.95. We observe data
yn ∈ Rny , with ny = 52, taken at uniformly spaced values on the mesh. Simulated i.i.d. observational
noise is added on, with ηn ∼ N (0, 0.052Iny), to give the DGP yn = Hun + ηn.

For the NL-statFEM model, we induce mismatch by setting ν = 1. As before, we set the covariance
of ξ to that of (3.2), with parameters θn = (ρn, `n). We estimate θn and σn at each timestep n, using
the weakly informative truncated Gaussian priors

p(ρn) ∼ N+(1, 12), p(`n) ∼ N+(1, 12), p(σn) ∼ N+(0, 12).

The posterior distribution p(un | y1:n, θ̂1:n, σ̂1:n) is computed with the ExKF. The initial conditions
for both the DGP and the posterior are the same and are given the Dirac measure, p(u0) = δm0( du0).
These initial conditions are set from simulating (4.8), with ν = 0.95 and u0(x) = sin(x/16), for 2000

timesteps to skip over transient behaviour2.
The verification quantities introduced in Section 4.1.3 are shown in Figure 4.7. For the posterior

the relative errors (Figure 4.7a) hover at ≈ 0.015; for the prior these are more variable but appear to
have a mean value of ≈ 1. Note also the rapid increase in the prior relative error that results from the
incorrectly specified viscosity. Incorporating data though the NL-statFEM formulation corrects for
this. Due to the oscillatory nature of KS solutions, the relative error is stable over the solution runtime
as no dissipative effects are seen on this timescale.

The forecast RMSE (Figure 4.7b) appears close to the known value of σn = 0.05 (shown as a dashed
line). In this case, the prediction step is accurate and gives reasonable predictions to the underlying
data generating process. This also suggests that the model with misspecified viscosity is locally
accurate but leads to divergences as t increases. This is also supported by Figure 4.7a: the relative
errors appear visually indistinguishable for small t, yet diverge as t increases. The norm of the Kalman
gain (Figure 4.7c)3 does not see the same initial drop as in Burgers equation. In this case the noise
hyperparameter is accurately estimated at all times, so the Kalman updates are stable and noise is
not mistaken for dynamics. Hyperparameter estimates (Figure 4.7d) show that the noise standard
deviation is accurately estimated (c.f. Figure 4.7b). In this case the GP hyperparameter estimates
(ρ̂n, ˆ̀

n) are not identified and are estimated near their prior mean values.

2In some fields this is called the “spin-up” period (see, e.g., Kalnay and Yang, 2010; Yang et al., 1995).
3In this case, given the similarity of the Kalman gain norm to the signal-to-noise ratio, we plot only the Kalman gain norm.
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(c) Kalman gain norm.
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Figure 4.7: KS example: verification quantities.

The prior and posterior means are compared in Figure 4.8. On the space-time plot of Figure 4.8a,
the means are similar up to t ≈ 20, at which point they diverge due to the different values of ν. The
dramatic divergence is due to chaotic dynamics. For a collection of temporal snapshots, shown in
Figure 4.8b, the NL-statFEM posterior mean acts as a physics-informed interpolator for the data that
corrects for the mismatch present in the prior. In this case the uncertainty bounds are not visible and
the posterior is highly certain about the mean mn|n.

4.3 The Korteweg-de Vries equation

The Korteweg-de Vries (KdV) equation is one of the most widely-studied nonlinear PDEs. For classical
parameter values it is given by (Drazin and Johnson, 1989)ut + 6uux + uxxx = 0,

u := u(x, t), x ∈ R, t ∈ R+.
(4.13)

Solutions are characterised by their nonlinear and dispersive behaviour due to the uux and uxxx terms,
respectively.

The KdV equation has a long history, intertwined with the study of solitary waves (Allen, 1998).
Observations of these were made by John Scott Russell in 1834, and theoretical foundations were
subsequently laid by Boussinesq (1871) and Lord Rayleigh (1876). Building on these works, Korteweg
and de Vries (1895) derived their namesake equation to model the solitary wave propagating in a
rectangular canal. The KdV equation was then studied by a group of post-WWII physicists (see,
e.g., Gardner et al., 1967; Lax, 1968; Miura et al., 1968; Zabusky and Kruskal, 1965), where analytical
properties of the KdV equation were of interest. This line of research culminated in a proof that KdV
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Figure 4.8: KS example: posterior mean results.

was integrable and resulted in significant developments in the field of integrable systems.
In this section, we study the KdV equation in the oceanographic context, so we provide a brief

introduction to its use in this setting. For more detail see, for example, Gerkema and Zimmerman
(2008). In oceanography, KdV arises as a model of nonlinear internal waves (Rayson et al., 2011,
2019), which are observed as waves of depression or elevation along a pycnocline. Nonlinear internal
waves are of broad interest in the physical sciences, due to the resulting sediment resuspension and
mixing (Jones et al., 2020), which has both biological and geological effects (Boegman and Stastna,
2019; Cacchione et al., 2002). They also result in currents and bores, which draw attention from the
engineering community due to the resultant interactions with offshore facilities (Huang et al., 2016;
Osborne and Burch, 1980).

KdV can be derived from considering a two-dimensional case of the Navier-Stokes equations for
an incompressible Newtonian fluid (Benney, 1966b; Lamb and Yan, 1996; Lee and Beardsley, 1974),
under the additional assumption that the flow is inviscid

∂tu + u · ∇u = −1
ρ∇p + g,

∇ · u = 0,

u := u(x, t), u ∈ R2, x = (x, z) ∈ [0, L]× [0, H], t ∈ R+.

(4.14)

In this case u is a two-dimensional velocity field which describes the flow in the horizontal and vertical
directions, and g is a gravitational acceleration vector. To derive the KdV equation we assume that (i)
ρ ≈ ρ̄+ ∆ρρ0(z); and (ii) the flow is both shallow in the vertical height-scale and long in the horizontal
length-scale.

Under these assumptions (4.14) is solved using the streamfunction, which is assumed to have the
separable form ψ(x, z, t) = u(x, t)φ(z). The vertical mode is φ(·) and the wave profile is given by u(·). The

68



4.3. The Korteweg-de Vries equation

wave profile u gives the displacement from the pycnocline4, which for a two-layer system is the internal
wave displacement from the equilibrium density interface. Asymptotics give the KdV equation

ut + αuux + βuxxx + cux = 0, (4.15)

which is readily interpretable: waves propagate at wave speed c, nonlinear steepening results from
uux, and dispersion is due to uxxx. Relative coefficient values determine the dominating regime and
waves can vary from quasi-linear to highly nonlinear. Coefficients are determined from the solution of
the eigenvalue problem

φ′′(z) +
N2(z)

c2
φ(z) = 0, N2(z) = −g

ρ̄

dρ0

dz
,

where N2(z) is the Brunt-Väisälä frequency (Cushman-Roisin and Beckers, 2011). The coefficients are
then given by

α =
3c

2

∫
(φ′(z))3 dz∫
(φ′(z))2 dz

, β =
c

2

∫
(φ(z))2 dz∫
(φ′(z))2 dz

. (4.16)

These require knowledge of the underlying density profile ρ(z), which can be either fixed a priori, or
estimated using in-situ measurements (Manderson et al., 2019).

For boundary conditions, one possibility is to specify an inflow boundary condition at x = 0, so
that u(0, t) = I(t), and a normal outflow boundary condition of ∂xu(x, t)|x=L = 0, or, an absorbing
boundary layer condition ∂xu(x, t)|x=L′ = 0, where L′ > L. Periodic boundary conditions can also be
used, which is our choice for the remainder of this section.

For NL-statFEM, we consider the stochastic version of (4.15)

ut + αuux + βuxxx + cux + νu = ξ,

u := u(x, t), x ∈ [0, L], t ∈ [0, T ],

u(x, t) = u(x+ L, t),

u(x, 0) := u0(x).

(4.17)

Again with ξ(x, t) ∼ GP(0, δ(t− t′) · kθ(x, x′)), with kθ(x, x′) = ρ2 exp(−‖x− x′‖22/(2`2)). We include
an additional linear dissipation term, ν, in (4.17), as for the second example, the model becomes
impractically mismatched by the end time of the simulation if this term is ignored. We acknowledge
that for laminar boundaries other methods are preferred (Grimshaw et al., 2003; Horn et al., 2002).
The dissipation coefficient ν is an inverse time-scale, having units 1/(time).

From a modelling perspective, KdV-type models offer a less accurate but computationally less
burdensome mathematical description of reality. In this section we study two examples of model
misspecification. The first is brought about through incorrect assumptions on model nonlinearity,
where a cubic nonlinear term is added into (4.15) to define the DGP. The second misspecification
occurs with experimental data, which uses measurements obtained in a two-layer stratified system
within a tank. In this scenario there is no “true” model and all models are misspecified to some
extent (Judd and Smith, 2004). These examples show that: (a) NL-statFEM is effective at correcting for

4The pycnocline is the point at which the vertical density profile gradient is largest; for a two-layer system the pycnocline
is the interface between the two layers.
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misspecification which is brought about through nonlinearity; and (b) NL-statFEM is able to deal with
real-world misspecification of physics in sparse observation regimes.

4.3.1 Discretisation

We discretise using the scheme outlined in Debussche and Printems (1999). We proceed first by time
discretisation, then spatial discretisation. With un(x) = u(x, n∆t), we use Crank-Nicolson for time
integration and continue as usual by multiplying with test functions ψ ∈ V 0 and integrating with
respect to x over [0, L] to give the weak form

〈un+1 − un, ψ〉+ ∆tα〈un+1/2un+1/2
x , ψ〉+ ∆tβ〈un+1/2

xxx , ψ〉

+ ∆tc〈un+1/2
x , ψ〉+ ∆tν〈un+1/2, ψ〉 = 〈∆ξn, ψ〉, ∀ψ ∈ V 0,

with ∆ξn ∼ GP(0,∆tkθ(x, x
′)). As with KS, we split the above into a coupled system of three first

order equations

〈un+1 − un, ψ〉+ ∆tα〈un+1/2un+1/2
x , ψ〉+ ∆tβ〈wn+1/2

x , ψ〉+ ∆tc〈un+1/2
x , ψ〉+ ∆tν〈un+1/2, ψ〉 = 〈∆ξn, ψ〉,

〈un+1/2
x , ψ〉 = 〈vn+1/2, ψ〉,

〈vn+1/2
x , ψ〉 = 〈wn+1/2, ψ〉, ∀ψ ∈ V 0.

Discretise the domain D = [0, L] into the mesh with nodes xi = ih, for i = 0, . . . , nc, so that
nch = L. In this case we specify separate function spaces for uh(x, t) and ψh(x, t). For the trial
functions, uh(x, t) =

∑nu
i=1 ui(t)φi(x) ⊂ C0([0, L];R), so that V 1

h = span{φi}nui=1, for the piecewise
linear basis functions. This expansion is defined similarly for vh(x, t) and wh(x, t), and we use the
same number of basis functions for each, so the total state dimension is 3nu. For the test function space
we set V 0

h = span{ϕi(x)}nui=1, where ϕi(x) are the piecewise constant functions which are defined as
(for 0 ≤ i < nc)

ϕi(x) =

ϕi(x) = 1, x ∈ [xi, xi+1),

ϕi(x) = 0, otherwise.

Thus, ψh(x) =
∑nu

i=1 ψiϕi(x).
In this case, we do not use Fenics, but have instead developed our own in-house Python package

to solve the system, built on top of Scipy. Solving the nonlinear system at each time is implemented
using Newton’s method, and convergence is typically achieved in < 5 Newton iterations. The linear
system to be solved at each timestep is solved directly, with the sparse LU decomposition. Debussche
and Printems (1999) note that using the Crank-Nicolson scheme avoids numerical dissipation present
in explicit schemes.
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4.3. The Korteweg-de Vries equation

4.3.2 Mismatched nonlinearity

In this section, data is generated from an extended KdV equation with a cubic nonlinear term:

ut + αuux + βuxxx + εu3ux = 0,

u := u(x, t), x ∈ [0, 20], t ∈ [0, 50],

u(x, t) = u(x+ 20, t),

u(x, 0) := u0(x).

(4.18)

We set α = 1, β = 0.01, and ε = 20. The NL-statFEM model solves (4.17) with the same α and β, and
c = ν ≡ 0, on the same grid as (4.18). Initial conditions, for both the DGP and NL-statFEM model,
are set to a wave of depression u(x, 0) = −0.3 sech2(x − 15). For the discretisation settings we use
nc = 400, ∆t = 0.025.

The data generating process is simulated using Dedalus (Burns et al., 2020) with 1024 gridpoints in
space. This is then downsampled to 20 gridpoints and jittered with synthetic Gaussian observational
noise, ηn ∼ N (0, 0.0012Iny), to give the simulated dataset. GP hyperparameters θn = (ρn, `n) and
noise standard deviation σn are estimated at each step by maximising the log-marginal posterior with
the weakly informative truncated Gaussian priors ρn ∼ N+(1, 12), `n ∼ N+(1, 12), and σn ∼ N+(0, 12).
The ExKF is used to compute the posterior p(un | yn, θ̂1:n, σ̂n).

Relative errors (Figure 4.9a) show that after t ≈ 15 the filter reaches a stable configuration with
errors at around 10%. RMSE values (Figure 4.9b) stabilise after an initial jump, yet remain above the
known noise value at each iteration. The Kalman gain (Figure 4.9c) suggests that in this case model
corrections are large in comparison to those seen previously. As a result, this example contains a larger
degree of model misspecification. Parameter estimates (Figure 4.9d) indicate that the length and noise
parameters are both stable, with the noise being slightly overestimated. Times at which the noise is
not identified result in it being set to the lower bound (shown as the vertical bars on the figure). In
this case model predictions, as quantified by ρn, vary in their accuracy and appear approximately
bounded to within (10−5, 10−1). The length hyperparameter is poorly identified and is often set to
near the prior mean value of `n = 1.

Next, we compare the posterior results in terms of the estimated wave profiles. For comparison, we
begin with the estimated prior, which is shown Figure 4.10a (left). For the fixed set of hyperparameters
ρn = 0.0025, `n = 1 for all n, the prior is visuallymismatched in themean via a horizontal displacement,
increased oscillations, and increased wave interactions. Wave interactions in this case arise due to
the periodic boundary conditions, which result in higher amplitude oscillations (and hence faster
travelling waves due to nonlinear advection) from high- and low-amplitude wavefronts interacting.
Note that the stochastic forcing induces an uncertainty about the PDE solution, represented by the
95% credible intervals shown. Note also that the data generating process is approximately contained
within the credible intervals. Figure 4.10a (right) shows that the posterior mean approximates the
data generating process, and the posterior uncertainty bounds have shrunk as a result of conditioning,
indicating high certainty about the posterior mean values. Model discrepancy between the data and
the NL-statFEM model has been corrected for. The space-time view of the posterior mean, shown in
Figure 4.10b, shows that the NL-statFEM posterior has incorporated the complex soliton interactions
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Figure 4.9: KdV cubic example: verification quantities.

in the data, not present in the prior.

4.3.3 Experimental data

We now apply the method to the experimental data collected in Horn et al. (2002). Experiments
were conducted to study weakly nonlinear models for internal waves in lakes and consisted of
generating internal waves in a two-layer stratified system, inside of a clear acrylic tank of dimensions
6× 0.3× 0.29 m. The tank contained an upper layer of fresh water and a lower layer of saline water,
with a density gradient of ∆ρ = 20 kgm−3. The tank was able to rotate in order to establish the initial
conditions, which were an inclined plane of angle ϑ = 0.5◦. This initial condition mimics the shear
induced by strong winds in lakes. At time t = 0 the tank is rotated to restore it to the horizontal.

Data were recorded at three spatially equidistant locations in the tank using ultrasonic wave gauges,
taking measurements approximately every 0.01 s, up to T = 1000 s. We use data up to T = 300 s, as
beyond this point the leading wave train begins to dissipate and slowly approaches equilibrium; we
are mainly interested in the behaviour up to and after the initial wave train passes through. Data are
measured in voltages and are post-processed to give pycnocline displacements in metres. A schematic
of the experimental setup is shown in Figure 4.11. In this case we haveH = 0.29 m and L = 6 m. Initial
conditions result in soliton trains forming after an initial transient period. This is seen when plotting
the data, shown in Figure 4.12, where the small measurement error is visually apparent. Transient
behaviour is observed before steepening and a soliton wave train forms; three such steepening events
are observed in the data we analyse. As T → 1000 s dissipation results in the wave profile approaching
a flat steady-state profile.

Our physical model is the extended KdV (eKdV) equation of (4.17), taking x ∈ [0, 2L], t ∈ [0, T ],
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Figure 4.10: KdV cubic example: visualising the posterior mean.
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Figure 4.11: Schematic diagram of the experimental apparatus. Wave-gauges are labelled WG1, WG2,
and WG3, and the initial conditions are shown as a grey line, labelled with initial angle ϑ◦.

and with coefficients

α =
3

2

c(h1 − h2)

h1h2
, β =

ch1h2

6
, c =

√
g′h1h2

H
, g′ =

∆ρg

ρ0
.

For the experiment under consideration, we have h1 = 0.232 m, h2 = 0.058 m, H = h1 + h2 = 0.29 m,
ρ0 = 1000 kgm−3. The dissipation coefficient ν is an inverse time-scale which is set to 3× 10−3 s−1. The
NL-statFEM prior mean, at the locations of the wave-gauges, is shown in Figure 4.12. This model does
not capture the observed behaviour exactly, becoming apparent after the initial transient dynamical
period. In this instance, model mismatch gradually appears as a process that acts over long time-scales.
Model waves have higher velocity than the observations and model amplitudes are slightly larger than
observed amplitudes. It is conjectured that this is due to misparameterisation of dissipation, but in
any case the model is misspecified.
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Figure 4.12: Observed data at wave-gauges and NL-statFEM prior mean (given by the deterministic
FEM solution to assumed eKdV equation).

Incorporation of reflective boundary conditions is done by solving the eKdV equation across the
extended domain [0, 2L], with periodic boundary conditions, and summing solutions in the (reflected)
subdomains [0, L], [L, 2L]:

û(x, t) := u(x, t) + u(2L− x, t), x ∈ [0, L].

For details on the derivation see Horn et al. (2002). An illustration of this procedure is shown in
Figure 4.13. Solving on the extended periodic domain allows for reflective boundary conditions to be
considered as the sum of left-moving and right-moving wave components.

Rather than estimating the eKdV parameters using inversion techniques we sequentially update the
model with observations to give the posterior p(un | y1:n, θ̂1:n, σ). Note that this posterior is over the
full extended domain [0, 2L], and we can access the posterior over the physical model domain through
summing the appropriate components of the estimated un, to give the estimated p(ûn | y1:n, θ̂1:n, σ).
As before we assume yn = Hun + ηn with known noise ηn ∼ N (0, 1.3588× 10−8Iny).

Due to small data in space (three observations at each timestep) we use a projection method to
estimate hyperparameters. This linearly projects the predicted mean mn|n−1 forward, estimated from
the data points: yn,i = an+ bnmn|n−1(xi). Parameters an, bn are estimated to give the best least-squares
linear projection from the prediction to the data. This gives a projected dataset, ỹn, using the linear
shift: ỹn = an + bnmn|n−1. The estimated hyperparameters are then given by

θ̂n = argmax
θn

{log p(ỹn | y1:n−1,θn, θ̂1:n−1, σ) + log p(θn)},
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Figure 4.13: Extended domain extended KdV: mapping from the periodic domain 2L into the reflective
subdomain L allows for reflective boundary conditions to be incorporated.

in which the observed data yn is replaced with the projected data ỹn. We project to a grid of 100 points
uniformly spaced across the solution grid. Note that this is only for the parameter estimation step and
we do not use this ỹn as the data in the update step. We set weakly informative priors: ρn ∼ N+(1, 12)

and `n ∼ N+(1, 12).
In this case, we consider three separate filters, each with different hyperparameters. These are:

(i) (ρn, `n) = (10−5, 1), (ii) (ρn, `n) = (10−4, 1), and (iii) (ρn, `n) estimated for all times. For ease of
reference, we refer to these as the small-ρn, the medium-ρn and the estimated-ρn filters, respectively.
We run three separate filters to ensure that filter performance is reasonable, given the sparsity of
observations and the parameter estimation procedure. In each case, the NL-statFEM posterior is
computed using the ExKF method with nc = 200 FEM cells and nt = 1001 timesteps.

Diagnostics are shown in Figure 4.14a, and it is seen that the filters stratify in terms of the RMSE.
The small-ρn filter has the largest RMSE values, consistently larger than the medium-ρn and the
estimated-ρn. At the data observation locations, the small-ρn filter is the least accurate. Themedium-ρn
and the estimated-ρn appear similar at the start of the simulation, but separate by the end time
T = 300 s, with the medium-ρn larger than the estimated-ρn. In Figure 4.14b we see this stratification
again, with the small-ρn filter having the smallest corrections, followed by the medium-ρn, and the
estimated-ρn.

Estimated hyperparameters are shown in Figure 4.14c. The ρn parameter is seen to vary between
two distinct levels, hinting that model predictions vary in their accuracy. In this case `n again struggles
to be identified from the prior mean. Taken with the parameter estimates of Figure 4.14c we see that
with decreasing values of ρn, NL-statFEM trusts the underlying model more and is less uncertain of
the predictions. In terms of the estimated log marginal likelihood, the results are:

• Small-ρn: log p(y1:nt | θ1:nt , σ) = −138, 584.5440.
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(a) RMSE for each of the three filters. (b) Kalman gain norm for each of the three
filters.

(c) Resultant estimated hyperparameters.

Figure 4.14: KdV experimental data: verification diagnostics.

• Medium-ρn: log p(y1:nt | θ1:nt , σ) = 1, 758.9706.

• Estimated-ρn: log p(y1:nt | θ̂1:nt , σ) = 20, 914.4421.

We see that the estimated-ρn filter gives the best values of the log marginal likelihood; optimising
the log marginal posterior gives the most performant model. For the remainder of this section, we
therefore discuss the results of the estimated-ρn filter only.

At the wave-gauge locations, the posterior mean mn|n is shown in Figure 4.15 (left). In comparison
to the prior mean, the posterior mean offers a close fit to the data. The credible intervals shrink
about the data and are not seen on the figure. Posterior wave profiles, shown in Figure 4.15 (right),
demonstrate that given the data, the method is able to yield a sensible estimate for the underlying
wave profile and is hence able to reconstruct the wave profile given sparse observations in space.
The uncertainty bounds are also sensible, in this case, shrinking about data observation locations,
and growing where there are no observations. Through incorporating a priori physical information,
NL-statFEM provides a physics-informed online regression methodology, that works in scenarios in
which observations are spatiotemporally sparse. A space-time view of the posterior mean wave profile
is shown in Figure 4.16, and demonstrates that the general behaviours of the flow (e.g. reflective
boundary conditions, dissipation, wave train formation) are all indeed captured.
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Figure 4.15: KdV experimental data. Left: data, prior mean, and posterior means and 95% credible
intervals across time, at the three observation locations. Right: Posterior means and 95% credible
intervals, across the domain, at three timepoints. The posterior, in this case, uses the estimated
hyperparameters.

Figure 4.16: KdV experimental data: heatmap of the posterior mean mn|n for estimated hyperparame-
ters filter.
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Chapter 5

Low-rank filtering for scalability

Despite the appeal of NL-statFEM, computational scalability is a challenge to its application to high-dimensional
problems typically experienced in physical and industrial contexts. This chapter overcomes this hurdle by
embedding a low-rank approximation of the underlying dense covariance matrix, obtained from the leading order
modes of the full-rank alternative (Duffin et al., 2022). We focus on the ExKF, deriving a low-rank variant
abbreviated by LR-ExKF. The scalable NL-statFEM, which uses the LR-ExKF, is presented in the context of
reaction-diffusion systems: canonical examples of nonlinear, time-dependent phenomena in 2D. This setting
provides the necessary increase in state dimension from the 1D examples considered in Chapter 4, being also
amenable to finite element discretisation due to parabolicity.

This chapter proceeds by first introducing reaction-diffusion equations. Next, we derive the LR-ExKF using
the NL-statFEM construction and discuss the algorithm. The chapter is concluded with three case studies
using experimental and synthetic data. The first is a 1D example with experimental data, and we show that
the LR-ExKF is able to accurately reproduce the full-rank ExKF, with small relative errors on the mean and the
variance. The next two examples deal with synthetic data, both using the Oregonator, a 2D system of two coupled
PDEs, and demonstrate scalability, taking the state dimension up to 132, 098 degrees-of-freedom. Examples
show that the NL-statFEM accurately reproduces the data generating process under two scenarios of misspecified
initial conditions. We also use the effective rank to verify the effective dimensionality of the low-rank covariance
matrix, ensuring that the number of modes chosen is adequate. Code to reproduce these results is publicly
available at https://github.com/connor-duffin/low-rank-statfem.

5.1 Reaction-diffusion systems

Reaction-diffusion (RD) systems are semilinear parabolic PDEs that describe the evolution of the
system state as it diffuses throughout the problem domain, whilst undergoing nonlinear interactions
with itself. In the simplest form, a general RD equation is

ut = r(u; Λ) + κ∆u, u(x, 0) = u0(x). (5.1)

with u := u(x, t) ∈ Rs, x ∈ D ⊂ Rd, t ∈ [0, T ]. As in the previous chapters, parameters Λ are assumed
known.
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Turing (1952) discusses how reaction anddiffusion processes, inside some organicmedium, form the
basis for chemical morphogenesis1. This was experimentally verified in Castets et al. (1990). The setting
in which these ideas developed was that of molecular biology. In this setting differential equations
can be derived from the chemical principle of mass action, where the rate of a chemical reaction
to the concentration of the reactants raised to the power of their stoichiometric coefficients. These
principles can be used to derive ODE systems which describe the evolution of chemical concentrations,
as specified by some governing chemical process which is spatially homogenous. Adding in spatial
inhomogeneity, whose dynamical representation arises through Fick’s law of diffusion (Fick, 1855),
allows for spatial variation to be taken into account and gives, instead of an ODE system, a PDE system.
This is the case in the original biological context of Turing.

A common example of a RD system— and the one that Turing studied initially — is an activator-
inhibitor system. An activator-inhibitor system comprises of two states — so that u ∈ R2 — where one
component is autocatalytic (i.e., it creates more of itself) and the other slows down this autocatalysis.
These two components form the activator and inhibitor, respectively.

To illustrate the ideas of the Turing instability, we follow the approach of De Wit (2007). A steady-
state solution to (5.1), ū, is assumed, which is temporally and spatially homogeneous. This solution
also satisfies r(ū) = 0. This state is perturbed by some function v(x, t) =

∑∞
n=1 cn exp(ωnt)φn(x),

where ∆φn = λnφn for each n. Linearising (5.1) about ū gives a PDE over the perturbed state ū + v

vt = J(ū; Λ)v + κ∆v (5.2)

where J(ū; Λ) = ∂r
∂u(ū; Λ). Making the appropriate substitutions gives the equation in series form,

which gives the condition ‖ωnI− κλnI− J(ū; Λ)‖2 = 0 in order for the PDE to hold.
Observe that in order for solutions to decay to some steady state we require that <(ωn) < 0. If

this is the case the system is in the stable regime. The Turing instability occurs when the transition to
<(ωn) > 0 occurs for some n, meaning that solutions are now unstable and at least one mode drifts
away at some exponential rate. This results from changing parameters Λ or κ and gives rise to a
bifurcation. The Hopf instability occurs when <(ωn) = 0, resulting in temporal oscillations which do
not decay.

Turing patterns are the spatiotemporal patterns that emerge as a result of the balance of reaction
and diffusion processes. To illustrate the formation of these patterns, we consider the Gray-Scott (GS)
model (Pearson, 1993)

∂u1

∂t
= −u1u

2
2 + F (1− u1) + κ1∆u1,

∂u2

∂t
= u1u

2
2 − (F + k)u2 + κ2∆u2.

(5.3)

The GS model is an activator-inhibitor system with u2 the activator and u1 the inhibitor. The behaviour
of the model solutions depends on the parameters Λ = (F, k, κ1, κ2); the parameter F is known as the
feed rate and is the rate that u1 is pumped into the domain. The parameter k is the kill rate and is the
rate that u2 is removed from the domain. Depending on the choices of these parameters, the dynamics
vary between various qualitative spatiotemporal patterns; three archetypal examples of the dynamics

1Morphogenesis is the process by which cells change and form into the specific structure that the resultant organism
becomes.

80



5.2. Low-rank NL-statFEM

(a) “Soliton”-type pattern with
(F, k) = (0.055, 0.062).

(b) “Spiral”-type pattern with
(F, k) = (0.014, 0.047).

(c) “Spot”-type pattern with
(F, k) = (0.028, 0.062).

Figure 5.1: Numerical solutions of the u2 component of the Gray-Scott equation over the domain
D = [0, 300] × [0, 300], with κ1 = 0.1, κ2 = 0.05. Different choices of the parameters (F, k) result in
variations in the dynamics.

are shown in Figure 5.1 and reflect various patterns seen in biology.
RD systems are semilinear parabolic equations that in general do not have closed form solutions.

They are an appropriate candidate for finite element methods, due to being parabolic, and have
potentially complex geometries. They can also be misspecified, due to approximations being employed
in their derivation which neglect certain chemical reaction kinetics and variables. For example, in the
Oregonator, a model for the dynamics of the Belousov-Zhabotinskii (BZ) reaction (Field and Noyes,
1974; Field et al., 1972; Jahnke et al., 1989; Tyson and Fife, 1980), a state dimension can be set to its
steady state value, thereby reducing s from three to two. RD systems are appropriate for studying
the effects of model misspecification in systems which, despite nonlinearity, are not highly nonlinear.
This also makes RD systems appropriate for testing the filtering methodology, as the LR-ExKF can be
applied without modifications required to account for strongly nonlinear, chaotic dynamics.

5.2 Low-rank NL-statFEM

We start with the FEM discretisation of (5.1). Without loss of generality, we deal with single-state
equations with u ∈ R, discretising the system to yield a coupled system of ODEs over the FEM
coefficients. As for the previous examples, we triangulate the domain D into Dh and look for solutions
uh(x, t) =

∑nu
i=1 ui(t)φi(x), in Vh = span{φi}nui=1, the solution space. In this section we again take φi

to be the linear polynomial C1(D;R) hat-functions. Multiplying by φj and integrating Equation (5.1)
over space admits the weak form

〈∂tuh, φj〉+ κA(uh, φj) = 〈r(uh), φj〉, j = 1, . . . , nu,

which corresponds to the nu-dimensional ODE for the FEM coefficients u(t) = (u1(t), . . . , unu(t))>

M
du

dt
+ κAu = r̃(u),
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where Mij = 〈φi, φj〉, Aij = A(φi, φj), and r̃(u)j = 〈r(uh), φj〉. Under bounded derivative conditions
on r(·), this ODE will have unique solutions by the Picard-Lindelöf theorem (Thomée, 2006, Chapter
13)

For stability, Crank-Nicolson is used for the time discretisation. As in the previous chapters, we
set the timestep size ∆t > 0, un = (u1(n∆t), . . . , unu(n∆t))

>, and un−1/2 = (un + un−1)/2. The fully
discrete system is therefore

M (un − un−1) + ∆tκAun−1/2 = ∆tr̃(un−1/2),

and is accurate to order O(h2 + ∆t
2) (Thomée, 2006, Chapter 14).

Assuming the same initial and boundary conditions, NL-statFEM adds stochastic forcing to
Equation (5.1):

ut = κ∇2u+ r(u) + ξ,

ξ := ξ(x, t) ∼ GP(0, δ(t− t′) · kθ(x,x′)).
(5.4)

Spatial discretisation with finite elements gives the stochastic differential equation for the FEM
coefficients

M du + κAu dt = r̃(u) dt+ dξ,

and time discretisation, with the Crank-Nicolson scheme, gives the fully-discrete evolution equation
on the FEM coefficients

M (un − un−1) + ∆tκAun−1/2 = ∆tr̃(un−1/2) + en, (5.5)

where en,j = 〈ξn− ξn−1, φj〉. The en are i.i.d. with en ∼ N (0,∆tGθ), for all n. Equation (5.5) implicitly
defines the NL-statFEM prior p(un | θ,Λ), conditioned on the PDE coefficients Λ. An approximation
to the prior can be computed using the methods presented in Chapter 3. This would require either
estimating the covariance through a tangent linear approximation to the dynamics (the ExKF method),
or through Monte Carlo simulation (the EnKF method). We note also that Monte Carlo simulation
of (5.5), recovers the standard Euler-Maruyama discretisation (Kloeden and Platen, 1992).

As previous (c.f. Chapter 3) we employ the covariance approximation Gθ ≈ MKθM
>. The

covariance matrix Kθ can be represented by a possibly low-rank square root Kθ = K
1/2
θ K

>/2
θ , with

K
1/2
θ ∈ Rnu×k′ for some k′ ≤ nu. If the spectrum of Kθ is rapidly decaying then a majority of the

variance can be explained by k′ � nu dominant modes, providing a scalable approach to storing
the posterior covariance. In this work we use the squared-exponential covariance function, which is
known to have rapidly decaying eigenvalues (Zimmermann, 2015); for efficient methods to decompose
GP covariance matrices into their leading eigenvalues we refer to Charlier et al. (2021); Dietrich and
Newsam (1997); Saatci (2011); Solin and Särkkä (2020).

As an example, for a 128× 128 finite element mesh over the square domain D = [0, 50]× [0, 50],
the leading eigenvalues of the squared-exponential covariance matrix Kθ are plotted in Figure 5.2, for
various values of the length-scale parameter ` ∈ {5, 10, 20}. After a maximum of≈ 400 eigenvalues (for
` = 5) the single-precision limit is reached, suggesting that in this case a low-rank approximation will
accurately capture the covariance matrix, whilst having much lower storage requirements — O(k′nu)
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Figure 5.2: Leading eigenvalues of Kθ over the 128× 128 mesh inside the domain D = [0, 50]× [0, 50].
Values are truncated to those which are positive, where the negative values arise due to single-precision
floating points being used.

floating points as opposed to O(n2
u). This motivates the proceeding filtering algorithm.

Now suppose that data is arriving, corrupted with Gaussian noise and observed through the linear
observation operator H : Rny → Rnu . The data generating process is

yn = Hun + ηn, ηn ∼ N (0, σ2Iny),

and we compute the posterior distribution p(un | y1:n,θ, σ,Λ), with y1:n = (y1, . . . ,yn). To do so we
use a low-rank variant of the ExKF, which computes the Gaussian approximation p(un | y1:n,θ, σ,Λ) ≈
N (mn,Cn), from a low-rank approximation of the state covariance matrix Cn = LnL

>
n . This is

constructed with the leading eigenvalues and eigenvectors of the covariance matrix Kθ and the
previous timestep covariance Cn−1. For similar approaches see Gillĳns et al. (2006); Law and Stuart
(2012); Rozier et al. (2007); Verlaan and Heemink (1997).

Alternative filtering methods may be used in this context: common examples include the particle
filter and the EnKF. However for high-dimensional systems the particle filter is known to suffer from
particle collapse (Bengtsson et al., 2008) and may require a computationally infeasible number of
particles to give accurate UQ. In terms of computational performance, the EnKF is known to scale
favourably as the state dimension is increased, providing estimates of the posterior mean which
accurately estimate the underlying data generating process. It is also able to make effective use
of distributed computing, due to conditional independence of the ensemble in the prediction step.
However due to the Monte Carlo structure of the EnKF the estimates of the posterior variance may be
inaccurate due to small ensemble sizes (Law and Stuart, 2012). Our interest in the LR-ExKF is thus
motivated by additional results in Law and Stuart (2012), which show that using a low-rank covariance
matrix in the ExKF can provide accurate UQ for regularly observed nonlinear dissipative systems,
similar to what is considered here.

Assume that thedistributionof theprevious state is givenbyp(un−1|y1:n−1,θ, σ,Λ) = N (mn−1,Cn−1),
with Cn−1 = Ln−1L

>
n−1, Ln−1 ∈ Rnu×k. Furthermore, assume that a low-rank square root of

Gθ = G
1/2
θ G

>/2
θ is also available, where G

1/2
θ ∈ Rnu×k′ ; this is constructed via G

1/2
θ = MK

1/2
θ ,

K
1/2
θ ∈ Rnu×k′ . Also note that Dnr̃ :=

∂r̃(un+1/2)

∂un
.

For all timesteps n = 1, . . . , nt, the LR-ExKF proceeds as:
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1. (Prediction step) Solve

M (m̂n −mn−1) + ∆tκA
(
m̂n−1/2

)
= ∆tr̃(m̂n−1/2),

for the prediction mean m̂n and compute the prediction covariance square root:

L̃n =
[

(M + ∆t(κA +Dnr̃))−1 (M + ∆tDn−1r̃) Ln−1,

∆t (M + ∆tκA + ∆tDnr̃)−1 G
1/2
θ

]
noting that L̃nL̃

>
n = Ĉn (the prediction covariance), and that L̃n ∈ Rnu×(k+k′). Each column of

L̃n can be formed in parallel; see the following discussion for further details.

2. (Truncation step)Take the eigendecomposition L̃>n L̃n = VnΣnV
>
n , whereΣn = diag(ς1, . . . , ςk+k′).

Approximate L̂n = L̃n [Vn]:,1:k for the highest magnitude k modes, so the prediction covariance
is Ĉn = L̂nL̂

>
n .

3. (Update step) Update the mean:

mn = m̂n + (HĈn)>
(
HĈnH

> + σ2Iny

)−1
(yn −Hm̂n).

And the covariance:

Ln = L̂nRn,

RnR
>
n = Ik − L̂>nH>(HĈnH

> + σ2Iny)
−1HL̂n,

using a Cholesky decomposition or otherwise.

If k = k′ = nu the LR-ExKF recovers the full ExKF exactly. If the datum yn is missing only the prediction
and truncation steps are completed, to produce the posterior p(un |y1:n,θ, σ,Λ) ≡ p(un |y1:n−1,θ, σ,Λ).

Discussion

First we compare the ExKF and LR-ExKF in terms of memory and operation counts. For a general
reference to these matrix computations we refer to Golub and Van Loan (2013). The standard ExKF
requires that Cn and Gθ are stored in memory, which is O(n2

u) in space. For large DOF problems this
is infeasible, and provides the main motivation for the low-rank approach. If one employs the standard
ExKF, the prediction step for the covariance matrix requires the solution of the sparse nu × nu matrix
M + ∆t(κA +Dnr̃), 2nu times for each timestep. For large nu this becomes prohibitively expensive. If
using a direct solver is feasible, this can be slightly mitigated by computing the LU factorisation of
M + ∆t(κA + Dnr̃), and reusing the factors when solving for each column of L̃n−1. However this
still requires computing the factorisation, and running forward- and back-substitution 2nu times per
timestep.

Furthermore, the update step requires the solution of the system HĈnH
> + σ2Iny , nu times, for

each timestep, which requires O(n3
y/3) operations to take the Cholesky decomposition and O(n2

ynu)

to solve.
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5.2. Low-rank NL-statFEM

In comparison, LR-ExKF requires storing only the low-rank square root Ln, having the memory
requirement of O((k + k′)nu) floating points. Also, M + ∆t(κA +Dnr̃) is solved k + k′ times for each
timestep, and the truncation step incurs a cost ofO((k+ k′)3) to compute the eigendecomposition. The
update step has a cost ofO(n3

y/3) operations to take the Cholesky factorisation of HĈnH
>+σ2Iny , but

requires only k solves, to give the cost O(n2
yk). Finally, the cost of computing the Cholesky factor Rn is

O(k3/3), however, as k � nu, computing the decomposition is dwarfed, in practice, by the prediction
step.

Note also that each column of the prediction covariance square root L̃n is able to be computed
in parallel. As each column requires solving M + ∆t(κA + Dnr̃) this can result in lower runtimes,
especially so when combined with, for example, algebraic multigrid solvers (Saad, 2003). This
parallelisation is likely to be necessary when scaling up the LR-ExKF to larger systems than those
considered here, and shares similar parallelisation potential to the EnKF prediction step (Evensen,
2009).

As the filter is initialised with the l2-optimal low-rank square-root K
1/2
θ , and the truncation step

preserves the dominant modes of variation, it is thought that this scheme is able to provide accurate
uncertainty quantification. An avenue of future work is verifying this conjecture under regimes of
stronger nonlinearity.

The low-rank approximation of the covariance matrix will lead to underestimation. If we write the
prediction covariance as Ĉn + Ĉn,err the norm of the discarded component is given by ‖Ĉn,err‖2 = ςk+1.
This is noted in Gillĳns et al. (2006), where it is also commented that this underestimation could lead to
similar problems as encountered in ensemble Kalman filtering, such as catastrophic filter divergence
(Gottwald and Majda, 2013). We have observed this when using unstable time-integration schemes;
we refer to Appendix A.3.3 for full details. There is additional symmetry to the EnKF: both algorithms
propagate a low-rank approximation to the covariance square root (Ln in the LR-ExKF; the ensemble
in the EnKF), and make the Gaussian assumption in the update step. One can think of the LR-ExKF as
an EnKF where the ensemble members are chosen to optimally represent the variance (in the l2 sense)
and the covariance propagation is done by the tangent linear model.

To avoid inverting HĈnH
> + σ2Iny , when ny � k, the Woodbury matrix identity (Mandel, 2006;

Rozier et al., 2007) can be used(
HĈnH

> + σ2Iny

)−1
=
(
HL̂n(HL̂n)> + σ2Iny

)−1

=
1

σ2

(
Iny + HL̂n

(
σ2Ik + (HL̂n)>(HL̂n)

)−1
(HL̂n)>

)
.

The dense k × k symmetric positive definite matrix σ2Ik + (HL̂n)>(HL̂n) can be solved using the
Cholesky decomposition (Golub and Van Loan, 2013).
GP hyperparameters θ and noise standard deviation σ can be estimated through the methods

discussed in Chapter 3. In this chapter, we do not estimate hyperparameters, choosing to study the
performance of the filter for the fixed-θ case. Hyperparameter estimation, in the LR-ExKF context, is
deferred to Appendix A.3.2.
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Chapter 5. Low-rank filtering for scalability

5.3 Case studies

The methodology is now demonstrated on three examples. The first is a verification of the method
on a 1D example of cell reaction-diffusion, using the experimental data of Simpson et al. (2020), and
shows a coherent synthesis of data with a prior physical model. It also confirms that the LR-ExKF
accurately reproduces the full-rank ExKF, with relative errors of O(10−6) for the mean, and O(10−4)

for the variance.
The remaining two examples are in 2D, and use the Oregonator model (Field et al., 1972; Tyson and

Fife, 1980). In each case, we induce model misspecification through the initial conditions. The first
demonstrates that observations of a single component of the system can correct for misspecification
on the unobserved component. The second example studies the affect of increasing the mismatch
variance ρ on filter performance and also shows scalability, using a state dimension of nu = 132, 098.
Conditioning on data corrects for misspecification, and in both cases NL-statFEM recovers the
underlying data generating process to relative errors of O(10−2). In these examples, running the
full-rank filter is prohibitively expensive so the effective rank of L̂n is used as a measure for filter
performance.

The appendix contains two additional case studies (Appendices A.3.2 and A.3.3), which discuss
the parameter estimation methodology, and a case of catastrophic filter divergence, respectively.

5.3.1 Experimental data: verification

A system of two coupled nonlinear reaction-diffusion equations is considered, which model the
densities of two different cell populations, as cells react with one another and diffuse throughout
the domain (Simpson et al., 2020). The combined system state is given by w = (u, v) ∈ R2 and, with
stochastic forcing, the governing equations are

ut = Duxx − kuu+ 2kvv(1− u− v) + ξu,

vt = Dvxx + kuu− kvv(1− u− v) + ξv,

ux(0, t) = 0, ux(1300, t) = 0,

u := u(x, t), x ∈ [0, 1300]µm, t ∈ [0, 60]h.

(5.6)

Coefficients are set to D = 700µm2/h, ku = 0.025, kv = 0.0725, and the initial conditions areu(x, 0) = v(x, 0) = 0, x ∈ [400, 900],

u(x, 0) = v(x, 0) = 0.055, otherwise.

In contrast to Simpson et al. (2020), who linearly interpolate the data to give their initial conditions, we
assume the fixed piecewise initial conditions as above. Instead of interpolating the data at time t = 0,
we condition on it. This approximately represents the unknown initial conditions. Equation (5.6)
is discretised using the C0(D;R) piecewise linear basis functions, for each component, on a regular
mesh with 200 cells on the interval [0, 1300]. Crank-Nicolson is used for the time discretisation, with
timestep size ∆t = 0.1.
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5.3. Case studies

Figure 5.3: Cells example: observed data, posterior means, and 95% posterior credible intervals for
the four observed data times (top), and posterior means and 95% posterior credible intervals for five
hours after the observation times (bottom).

Hyperparameters of ξu and ξv are set to the same values, which are constant across time. This is to
avoid propagating poor estimates through the simulation as, in this case, observations are temporally
sparse. The covariance structure of Equation (5.4), is used, and cross-correlations are assumed to be
zero, E(ξuξv) = 0. Hyperparameters are set to ρ = 2× 10−3 and ` = 100.

The data consist of observations of the two species at 4 times, tobs = 0, 16, 32, 48 hours. The
concatenated state, wn = (u>n ,v

>
n )
>, gives the data generating process yn = Hwn + ηn at the

observation times, with noise ηn ∼ N (0, σ2Iny), σ = 0.01.
The NL-statFEM posterior p(wn | y1:n,θ, σ,Λ) = N (mn,LnL

>
n ) is computed with the LR-ExKF,

using k = k′ = 32 modes for both the state covariance, and for the covariances of the GPs ξu and ξv.
More than 99% of the variance is retained in the variance truncation at each timestep. The resulting
posterior means mu

n,m
v
n, and 95% posterior credible intervals are shown for both the observation

times and times five hours after the observation times, in Figure 5.3. For the v component, there
is little discrepancy between the data and the prior assumed model, however for the u component
there is some degree of model mismatch, which conditioning on data can partially account for. The
posterior means for each component across the entire space-time grid are also plotted in Figure 5.4,
and demonstrate the immediate effects of conditioning on data at the times at which these data are
observed.

The low- and full-rank ExKFs are now compared through the posterior means and variances
(diagonal of the covariance matrix), in terms of the relative error

‖mu
n −mu

n,LR‖2
‖mu

n‖2
,
‖var(un)− var(un,LR)‖2

‖var(un)‖2
.

Shown in Figure 5.5a, for a fixed number of modes (k = k′ = 32), the relative errors are small, at
approximately 10−7 for the posterior mean, and 10−5 for the posterior variance. Sharp increases are
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Chapter 5. Low-rank filtering for scalability

Figure 5.4: Cells example: space-time plot of the posterior means for each component. Times at which
data are observed are shown with a dashed black line. On the u component there is an immediate
correction from data conditioning, not present in the v component: the prior model for v is more
accurate.

observed at the times at which data is observed, in both the posterior mean and the posterior variance.
The relative error at the end time of the simulation is also shown in Figure 5.5 as k is increased, with
k′ = 32. As k increases the error decreases. Past k = k′ = 32 there is a small increase in the accuracy of
the filter, with a minor increase from k = 32 to k = 64. This minor increase is thought to be due to the
inclusion of information available from the data, not present in the prior alone. Beyond some effective
number of modes, taking larger k does not yield significant gains in accuracy.

These results also suggest that the low-rank approximation of the prior covariance matrix has a
large affect on the accuracy of the estimated posterior covariance matrix, as once k = k′ gains in filter
accuracy are small. Recall that in the problem specification the uncertainty is induced via the additive
GP , ξ, and no other sources of uncertainty are considered; if the covariance of ξ is approximated to a
sufficient degree then the low-rank approximation of the filter is accurate.

This can be seen from the ExKF approximation of the prior measure, which for exposition is
considered in the case in which Gθ is rank-deficient but is stored fully in memory. This gives an
iterative approximation for the covariance matrix (c.f. Chapter 3)

Ĉn = J−1
n (Jn−1Cn−1J

>
n−1 + Gθ)J

−>
n ,

where Jn is the Jacobian matrix of the FEM model with respect to un, evaluated at (m̂n,mn−1). Given
the recursive nature of computation and the fact that C0 = 0 (due to the assumed initial conditions
being exact) the prior covariance is a sum of matrix products with Gθ and the Jacobian matrices, at
each timestep. The prior covariance will be accurate if the low-rank approximation of Gθ is accurate.
Empirically, this is also seen for the posterior covariance. This phenomenon is analysed further in
Appendix A.3.1, in which we investigate the errors on the mean and the variance as both k′ and σ are
varied.
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5.3. Case studies

(a) Relative error between the low-rank and full-rank
ExKF, across all times, using k = k′ = 32 modes, on
the u component.

(b) Relative error between the low-rank and full-rank
ExKF, at the final time t = 60 h, as k is increased
(k′ = 32 for all k).

Figure 5.5: Cells example: relative error comparisons between the low-rank and full-rank ExKF
variants.

Figure 5.6: Spiral regime example: initial conditions on the u component. StatFEM posterior initial
condition shown on the left, and the true initial condition shown on the right.

5.3.2 Mismatch via initial conditions: spiral regime

We now consider a two-dimensional example of misspecified initial conditions with the Oregona-
tor (Field et al., 1972; Tyson and Fife, 1980), a coupled PDE with state w = (u, v) ∈ R2. Adding
stochastic forcing on the observed v-component gives the two-dimensional system

ut = 1
ε

(
u(1− u)− fv u−qu+q

)
+Du∇2u,

vt = u− v +Dv∇2v + ξv,

∇u · n = 0, ∇v · n = 0, x ∈ ∂D,

u := u(x, t), v := v(x, t), x = (x1, x2) ∈ D,

D = [0, 50]× [0, 50], t ∈ [0, 10].

The Oregonator has been well-studied, after being derived as a simplified model for the chemical
reaction kinetics of the BZ reaction (Field and Noyes, 1974; Field et al., 1972; Jahnke et al., 1989; Tyson
and Fife, 1980). It is a classical example of an activator-inhibitor system, sharing similar behaviour
to the Fitzhugh-Nagumo model in certain parameter regimes (Gong and Christini, 2003). We first
study the Oregonator in the excitable regime, setting f = 2, q = 0.002, and ε = 0.02. Diffusion
constants are set to Du = 1, Dv = 0.6, The GP ξv has the covariance kernel of Equation (5.4), with
θ = (ρ, `) = (0.001, 5).
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Chapter 5. Low-rank filtering for scalability

To set the initial conditions, we use the procedure of Jahnke et al. (1989). To induce some degree
of mismatch, initial conditions of the NL-statFEM filtering posterior are set by pushing the initial
condition of the truth through a heat equation with the diffusion coefficientDu = 1 (i.e. the Oregonator
sans reaction terms), for t = 0.1. This results in the amplitude of the initial conditions being dampened
and blurred (see Figure 5.6).

The spatial discretisation uses the standard C0(D;R) hat functions, over a regular mesh with
128× 128 cells (16, 641 nodes) so that the total state dimension is 33, 282. As previous Crank-Nicolson
is used for time discretisation, with ∆t = 0.001.

Data is observed on the slow v component at 1041 locations inside Dh, and is observed every 5

timesteps (the time between observations is 0.005). Data is sparse in space, having approximately 3%

of the state dimension observed at observation times. The excitable u is not observed at all, and is only
updated through the observed v values.

As previous we concatenate the discretised state vector into wn = (u>n ,v
>
n )> so that the data

generating process is yn = Hwn + ηn, ηn ∼ N (0, σ2Iny). The measurement fidelity is σ = 0.01. We
run the LR-ExKF to obtain the posterior p(wn | y1:n,θ, σ,Λ) = N (mn,LnL

>
n ) for all n, using k = 250

(≈ 0.75% of the state dimension) modes to represent the state covariance LnL
>
n , and using k′ = 150

modes to approximate the covariance matrix of ξv, Gθ. When running the filter, at least 99% of the
variance is retained at each truncation step.

To give a snapshot of results, the data, posterior mean, posterior variance, and leading order modes
are each shown in Figure 5.7, at time t = 5. The dominant region of variance appears to be at the spiral
tip, with additional variation observed about the boundary of the spiral on the u component. This
hierarchy is seen in both the colour intensities of the variance plots in Figure 5.7a and in the columns
of Ln, in Figure 5.7b; for UQ, there is a hierarchy of variance regions of decreasing importance.

Performance of the filter is verified through computing the relative errors on the means mu
n, mu

n

against the data generating process (DGP):

‖mu
n − un,DGP‖2
‖un,DGP‖2

,
‖mv

n − vn,DGP‖2
‖vn,DGP‖2

.

These are shown in Figure 5.8a. After an initial period of disparity, the NL-statFEM mean mn closely
tracks the truth, reaching a stable configuration after this initial warm-up period. Observations can
thus correct for misspecification on the unobserved component, with small (O(10−2)) relative errors in
the mean of the NL-statFEM posterior.

We also compute the effective rank Deff (Gottwald and Majda, 2013; Patil et al., 2001) of the
prediction covariance matrix square-root L̂n, using the eigenvalues from the truncation step. We define
the effective rank from the eigenvalues (diagonal of Σn) ς1 ≥ ς2 ≥ · · · ≥ ςk of the k × k matrix L̂>n L̂n

Deff =

(∑k
i=1

√
ςi

)2

∑k
i=1 ςi

,

which takes values Deff ∈ [1,min{k, nu}]. This measures the alignment of the columns of L̂n and
can be used to diagnose problems (for example filter collapse), or verify performance (for example,
checking that k and k′ are not over- or under-specified).
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5.3. Case studies

(a) Top subplot: Posterior means mu
n (top left), mv

n (top centre), and observed data yn (top right). Bottom
subplot: posterior variances var(un) (bottom left) and var(vn) (bottom right) (diagonal of the covariance matrix
LnL>n ). All are reported for time t = 5.

(b) First eight columns of the posterior covariance square-root Ln, for the u-component. These are the leading
modes of variation at time t = 5.

Figure 5.7: Spiral regime example: posterior summary plots for time t = 5.

For this example, this is plotted in Figure 5.8b, and appears to be stable after an initial drop, further
suggesting that the filter has reached a stable configuration. The initial drop in the effective rank
appears almost immediately after the filter is started, whereas for the relative errors this is at time t = 2.
This suggests that reaching a stable configuration in the covariance is perhaps necessary before the
same occurs in the mean. The estimated Deff has a mean value of approximately Deff ≈ 70, indicating
that the choice of k = 250 is perhaps excessive for this example.
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(a) Relative errors ‖mu
n − un,true‖2/‖un,true‖2, and

‖mv
n − vn,true‖2/‖vn,true‖2, for all times in the simulation.

(b)Effective rank of the prediction
covariance square root L̂n for all
times in the simulation.

Figure 5.8: Spiral regime example: diagnostic plots for the spiral wave example.

5.3.3 Mismatch via initial conditions: oscillatory regime

In the oscillatory regime, the Oregonator has f = 0.95, ε = 0.75, q = 0.002, with diffusion coefficients
Du = Dv = 0.001 (Gong and Christini, 2003). Stochastic forcing is now included on the u component

ut =
1

ε

(
u(1− u)− fvu− q

u+ q

)
+Du∇2u+ ξu,

vt = u− v +Dv∇2v,

and the same spatio-temporal domain x ∈ D = [0, 50]× [0, 50], t ∈ [0, 10], is used. In this instance the
initial conditions (u0,true, v0,true) are perturbed via setting

u0 = u0,true + κ
(

1 + sin
(πx1

50
+ ζ1

)
sin
(πx2

50
+ ζ2

))
, v0 = v0,true,

where (ζ1, ζ2) ∼ N (0, 12). The amplitude κ is set to 0.02 in our case studies, and for the truth
(u0,true, v0,true), these are set from running a pilot simulation for 100, 000 timesteps, where the pilot
simulation has randomly generated initial conditions u, v ∼ Unif(0, 0.15). The upper and lower
bounds on the uniform distribution are determined from the attractor of the corresponding Oregonator
ODE. Both the perturbed and true initial conditions are shown in Figure 5.9. This initial condition is
included in the accompanyingGitHub repository, available from https://github.com/connor-duffin/

low-rank-statfem.
As previous the spatial discretisation uses C0(D;R) basis functions, on a mesh with 256× 256 cells,

with Crank-Nicolson for the time discretisation. The timestep size is ∆t = 0.01.
The u-component is observed at each timestep up to t = 10, at 512 observation locations. As usual,

yn = Hwn+ηn, ηn ∼ N (0, σ2Iny), with σ = 0.01. The posterior p(wn |y1:n,θ, σ,Λ) = N (mn,LnL
>
n ) is

computed using the LR-ExKF with k = 128 and k′ = 64. The initial leading-order eigendecomposition
of the GP covariance matrix Gθ is done using Lanczos iterations (Saad, 2003) as implemented in
Scipy (Virtanen et al., 2020), with the matrix-vector products done on the GPU via KeOps (Charlier
et al., 2021).

We compare three filters, each with the GP covariance kernel of Equation (5.4), which set
ρ ∈ {10−2, 10−3, 2 × 10−4}, with ` = 10 and σ = 10−2 for each. In each filter more than 99% of the
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5.3. Case studies

Figure 5.9: Oscillatory regime example: initial conditions for u component. StatFEM posterior initial
condition shown on the left (same for each filter configuration) and the true initial conditions shown
on the right.

variance is retained at each truncation step. For the remainder of this discussion these are referred to
as the large-ρ filter, the moderate-ρ filter, and the small-ρ filter, respectively.

Relative errors for the NL-statFEM posterior means are shown alongside the NL-statFEM prior
mean in Figure 5.10a. The small-ρ filter shows the slowest misspecification correction compared to the
others; the filter is more certain of the model predictions and takes longer than the others to reach a
stable filtering configuration. It also results in the largest relative error by the end of the simulation.
The moderate ρ-filter, however, despite slower initial misspecification correction, results in the lowest
relative error by t = 10. The large-ρ filter displays the most rapid convergence, yet results in relative
errors increasing after the initial correction. This is thought to be due to ρ being equal to the noise
ρ = σ = 0.01, which results in assimilation of spurious noise perturbations. These results confirm the
role of the ρ hyperparameter in controlling the belief in (or uncertainty of) the underlying dynamical
model. Higher variance implies less certainty and more rapid corrections for model misspecification.

This trend of slower corrections, for more certain models, is also seen in the effective rank Deff of
the prediction covariance matrix L̂nL̂

>
n , plotted for each of the filters in Figure 5.10b. In terms of Deff ,

the large-ρ filter has the most rapid convergence to a stable filtering configuration, with the small-ρ
filter the slowest. Once in this stable filtering configuration the small-ρ filter has a larger effective rank
compared to the large-ρ filter, and it is posited that a higher effective rank implies a more complex
covariance structure. To check this we plot the leading modes of the covariance matrix at the end time
t = 10, in Figure 5.10c. This is indeed the case, and we see that the modes for the small-ρ filter display
more localised structures pertaining to the dynamics of the model, when compared with those of the
large-ρ filter, which appear more similar to the eigenfunctions of the GP covariance kernel kθ(·, ·).

This also merits another interpretation of the variance hyperparameter ρ, that of controlling the
weight of the a priori misspecification covariance matrix Gθ in comparison to the (tangent linear)
dynamical evolution of the previous timestep covariance Cn−1 = Ln−1L

>
n−1. In this case, due to the

complex spatial oscillations seen in the dynamical model, by decreasing the weight of the simpler
GP covariance, this results in the more complex dynamical interactions being present in the posterior
covariance, resulting in an increased Deff .
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(a)Relative l2 errors for the large-ρ, moderate-
ρ, small-ρ filters, and the prior model.

0 2 4 6 8 10
Time t

20

30

40

50

60

70

80

90

D
ef

f

= 2 × 10 4

= 1 × 10 3

= 1 × 10 2

(b) Effective rank of the prediction covariance
square root L̂n for the large-ρ, moderate-ρ,
small-ρ filters, and the prior model.

(c) Leading four covariance modes (first four columns of the posterior covariance matrix square root Ln) for the
large-ρ filter (left) and the small-ρ filter (right). Shown are the modes for the u-component.

Figure 5.10: Oscillatory regime example: relative l2 errors (top left), effective rankDeff (top right), and
leading posterior covariance modes (bottom) at time t = 10, oscillatory mismatched initial condition.
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Chapter 6

Discussion

This thesis was about a procedure to synthesise physical models with data, focussing on the specific case of
nonlinear PDEs as discretised with finite element methods. Significant research has been dedicated to inversion
problems, which aim to recover model parameters from data, and to data assimilation problems, which aim to
sequentially update a time-evolving model state as data becomes available. We built upon the previous work
of Girolami et al. (2021) and introduced the NL-statFEM (Duffin et al., 2021): a coherent Bayesian statistical
approach to deal with model misspecification through the combination of techniques from both inversion and
data assimilation. Through the admission of uncertainty inside of the governing equation — as in inversion —
model misspecification is recognised and is sequentially corrected for through updating the resultant stochastic
physical model with data using classical data assimilation algorithms (the extended and ensemble Kalman filters).
Numerical discretisation of the governing equations with finite element methods enabled the application of the
method to a variety of systems in one and two dimensions. Scalability, ensured through making a low-rank
approximation to the posterior covariance matrix (Duffin et al., 2022), allows for widespread application of
NL-statFEM across engineering and the physical sciences. In this chapter, the main contributions of this thesis
are summarised in Section 6.1, and extensions to future work are covered in Section 6.2.

6.1 Conclusions

Partial differential equations are one of the most common ways to describe physical laws or ap-
proximations thereof. Solutions to these equations are often realised, in practice, via finite element
discretisation, due to their nonlinearity and/or the presence of complex geometries of the solution
domains. However, due to model imperfections, in the comparison of model outputs to observed data,
mismatch is often seen between the posited physical model and observations. This suggests that the
model is misspecified.

A common approach to reconcile model misspecification is to estimate the PDE parameters such
that they minimise the error between observed data and the model output. This solves the inverse
problem. A Bayesian approach to the inverse problem may also be taken. In this, a prior distribution is
placed over the model parameters, which is subsequently updated with data based upon a particular
data generating process. This gives the posterior distribution. Solving the inverse problem deals with
model misspecification due to possibly incorrectly specified model parameters, but does not allow
for the correction of model misspecification from non-parameter sources. An alternative approach
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— used in the field of data assimilation — is to instead treat the model as a black box object with
some extrusive additive noise process, and sequentially update the model solutions as data becomes
available. This corrects for general model error (i.e., not just from parameters) in a time-evolving
fashion, but sacrifices interpretability due to uncertainties being extraneous to the model.

In Girolami et al. (2021) the statistical finite element method (statFEM) is presented, which corrects
for model error via observations in an interpretable, statistically coherent fashion. As in Bayesian
inversion, all model parameters are modelled stochastically via GPs. However, instead of being
estimated, these parameters are marginalised over to give an induced prior distribution over the FEM
discretised PDE solution. This prior is then updated with data to give the posterior distribution
over the FEM coefficients. Due to linearity of the underlying assumed elliptic PDE, the posterior
distribution derived is also Gaussian and can be arrived at via the standard Gaussian update.

FEM solutions are directly updated with data to correct for arbitrarily-sourced model mismatch,
similar to how this is done in the field of data assimilation. The posterior quantifies all assumed
uncertainties associated with both the model and the data generating process. However, in Girolami
et al. (2021), statFEM did not make use of the temporal structure as in common data assimilation
algorithms, being limited to linear, static PDEs in low-dimensional settings. In this thesis we
address these shortcomings, providing a computationally scalable approach to statFEM in nonlinear,
time-dependent problems.

Our first contribution was the extension of statFEM to nonlinear, time-evolving systems. Denoted
NL-statFEM, this methodology broadens the applicability of the original work to a much wider amount
of problems. We leveraged the same model uncertainty structure as in the original statFEM, but,
using methods from the data assimilation literature, derived algorithms to sequentially compute
the posterior distribution of interest in an online manner. Model misspecification uncertainty was
given by a stochastic forcing function, modelled with a GP . However to sequentially update models
with data, our NL-statFEM made use of the extended and ensemble Kalman filters, which compute
Gaussian approximations to the filtering posterior. These approximate Gaussian distributions describe
the probability of the finite element discretised PDE solution, conditioned on the data up to and
including the current point in time. Hyperparameter estimation also proceeds for the GP , via the
ExKF log-marginal likelihood. This log-marginal likelihood also quantifies uncertainty associated
with the model forecasts. The derivation of this methodology was provided in Chapter 3, being based
upon the previously published work in Duffin et al. (2021).

In Chapter 4, our NL-statFEM methodology was demonstrated on three canonical nonlinear PDEs:
Burgers Equation, the Kuramoto-Sivashinsky equation, and the Korteweg-de Vries equation. These
results showed that the method can approximate the data generating process to give an interpretable
posterior distribution, which can correct for model mismatch in regimes of gradually increasing
model misspecification. The method was also applied to the experimental data collected in Horn et al.
(2002), and provided a sensible physics-informed interpolator, with uncertainty quantification, in a
spatially sparse observational regime. Hyperparameter estimation was checked, empirically verifying
unbiasedness the ExKF log-marginal-likelihood estimates. Code to replicate these results is contained
in an accompanying repository, available at https://github.com/connor-duffin/statkdv-paper.

Our second contribution was the derivation of a computationally scalable NL-statFEM, by making
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a low-rank approximation to the posterior covariance matrix through representing this covariance by
its leading-order modes. Combining this with the previously developed ExKF methodology gives a
low-rank extended Kalman filter (LR-ExKF) algorithm that is highly scalable, whilst also providing a
sensible and interpretable uncertainty quantification. This was presented in Chapter 5, where we again
provide extensive numerical evidence of the efficacy of this approach. Results in 1D, with experimental
data collected in Simpson et al. (2020), showed that the LR-ExKF can approximate the full-rank
alternative with small relative errors in both the mean and the variance. These results also confirm
the efficacy of NL-statFEM in temporally sparse observation regimes. Additional results with the 2D
Oregonator system demonstrate scalability, with the NL-statFEM correcting for model misspecification
in the initial conditions through observing a single component of the coupled system. These results
are robust under different model parameter regimes and under increasing state dimension. We also
showed that the effective rank of the covariance matrix can verify the number of modes taken in the
low-rank approximation, providing a visual check of filter convergence. Code to reproduce these
results is available at https://github.com/connor-duffin/low-rank-statfem.

6.2 Future work

This thesis sets the foundation for future studies of embedding data within nonlinear, time-evolving
FEM models. However we deliberately took the approach of discretising the problem first, then
conducting inference. This trades mathematical complexity in the problem specification — avoiding
having to derive posterior measures over the appropriate function space of PDE solutions — for
potential scalability. Scalability, in this sense, means that the problems are well-posed on the infinite-
dimensional space and are thus robust to mesh refinement (see, e.g., Cotter et al., 2013). An alternate
approach would be to derive filtering methods on the appropriate function space, which sequentially
update the filtering measure as data becomes available. Analogues of the approximate Gaussian
filters could be derived and theoretical guarantees may be given, showing, for example, stability
and convergence. The RKHS setting of Papandreou et al. (2021) and Karvonen et al. (2022) could be
leveraged in this work. This infinite-dimensional formulation would also have to acknowledge the
connection to stochastic PDEs (see, e.g., Hairer, 2009), which was outside the scope of this thesis.

Various theoretical guarantees could also be proven for NL-statFEM. The first is the convergence
and stability of the ExKF/EnKF for generic nonlinear PDEs, under appropriate assumptions on model
nonlinearity (for example, assuming that the nonlinearity arises as a polynomial of the PDE state
variable). Further analysis should also be conducted on the LR-ExKF in both the linear and nonlinear
cases, analytically studying convergence to both the full-rank approximate posterior (if applicable)
and the true filtering posterior, as the number of modes is increased.

Despite labelling our NL-statFEM as a statistical finite element method, the underlying framework
is discretisation-agnostic and is amenable to any appropriate PDE discretisation method. Extensions,
therefore, into spectral methods (e.g., spectral Galerkin methods and tau methods) (Boyd, 2001) and
finite volume methods (LeVeque, 2002) would be of interest. When extending into these domains,
studying alternate time-integrators would also be of use, going beyond the first-order schemes
considered in this thesis. Discretisation, in space and/or time, may also be handled via probabilistic
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numerical methods (see, e.g., Hennig et al., 2015), giving a fully probabilistic, statistically coherent
approach to assimilating data into PDE models. The associated posterior measure, in this case, would
quantify uncertainty associated the PDE solution given the data and a chosen level of mesh-refinement.

Estimation of the PDE parameters from the marginal likelihood is not considered in this work and
would be a useful extension that allows for a completely data-driven methodology. MAP estimation,
the same as for the GP hyperparameters, may be used. Alternatively, a fully Bayesian approach may
be taken for both the GP hyperparameters (Filippone and Girolami, 2014) and the PDE parameters,
with the posterior distribution of these parameters estimated.

The further application of NL-statFEM to high-dimensional, highly nonlinear systems is, finally,
of course of interest. Augmentations of the presented filtering algorithms may be required to deal
with significantly nonlinear systems with sparse observation regimes (Verlaan and Heemink, 2001).
Specifically for the methods considered in this thesis, the application of a NL-statFEM-type method
to higher-dimensional fluids problems governed by conservation laws for experimental and in-situ
measurements is of particular import, being an important setting in which temporally evolving
nonlinear PDEs are applied.

98



Appendix A

Appendices

This appendix contains various additional results that supplement the main text. First, we present a proof that
the linearisation of the weak form returns a Gateaux derivative which coincides with the Jacobian matrix. The
next section presents the same simulation study results as in Chapter 4 but with the NL-statFEM posterior
distributions computed with the EnKF instead of the ExKF. The final section presents three additional simulation
studies using the LR-ExKF of Chapter 5. The first demonstrates the effect of the number of prior covariance
modes on the covariance approximation, using the cells example studied previously. The next two use the
Oregonator. These examples verify the parameter estimation methodology and give an example of filter divergence,
respectively.

A.1 Linearisation results

When solving nonlinear FEM systems, at each timestep the system of equations requires solving, for
which we use Newton iterations.1 This derivative is also required for NL-statFEM, when we compute
the ExKF posterior covariance. In the notation of Chapter 3 this is the derivative of the system with
respect to un, ∂M(un,un−1)

∂un
, which is equivalent to taking a Gateaux derivative in the direction of the

test function. We demonstrate this equivalency in the following proposition.

Proposition 2. Consider a general nonlinear weak form,W : Vh× Vh → R, which we will write asW(uh;φj),
j = 1, . . . , nu, assumed to be of the formW(uh;φj) = 〈LΛuh, φj〉+ 〈FΛ(uh), φj〉. Then forW : Rnu → Rnu ,
in whichW (u)j =W(uh;φj), the Gateaux derivative DW(uh;φi, φj), in direction φi, defines the (j, i) entry
of the Jacobian matrix J(u) = ∂W (u)

∂u .

Proof. For a single j, in some direction of vh, the Gateaux derivative of the nonlinear weak form is
given by:

DW(uh; vh, φj) =
d

dε

[
〈LΛ(uh + εvh), φj〉+ 〈FΛ(uh + εvh), φj〉+ 〈ξ, φj〉

]
ε=0

= [〈LΛvh, φj〉+ 〈∂FΛ(uh + εvh)vh, φj〉]ε=0

= 〈LΛvh, φj〉+ 〈∂FΛ(uh)vh, φj〉

1The nonlinear solve can include a line search component, which chooses a locally optimal stepsize according to some
criteria, such as the Armĳo condition (Nocedal and Wright, 2006). We have found that in practice adding a line search
increases stability.
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Therefore DW(uh;φi, φj) = 〈LΛφi, φj〉+ 〈∂FΛ(uh)φi, φj〉. Hence making the substitution vh = uh =∑nu
i=1 uiφi(x) we get

DW(uh;uh, φj) =

nu∑
i=1

ui〈LΛφi, φj〉+

nu∑
i=1

ui〈∂FΛ(uh)φi, φj〉, j = 1, . . . , nu.

On the other hand, the (j, i) entry of the Jacobian matrix is given by

∂W (u)j
∂ui

=
∂

∂ui
[〈LΛuh, φj〉+ 〈FΛ(uh), φj〉]

= 〈LΛφi, φj〉+ 〈∂FΛ(uh)φi, φj〉.

Implying that (J(u)u)j =
∑nu

i=1 ui〈LΛφi, φj〉+
∑nu

i=1 ui〈∂FΛ(uh)φi, φj〉, which is equal toDW (uh;uh, φj).

A.2 Ensemble Kalman filter: additional examples

In this section we reproduce the results given in Chapter 4, computing the NL-statFEM posterior
distribution using the EnKF instead of the ExKF. In these examples, unless otherwise mentioned,
all discretisation parameters (e.g., number of FEM cells nc, timestep size ∆t, and so on) and PDE
parameters Λ are set to the same values as given in the respective sections in Chapter 4. In general,
results are similar to those given by the ExKF, with some notable differences arising due to the Monte
Carlo approximations given in the EnKF, and small ensemble sizes Nens.

A.2.1 Burgers equation

First, we replicate the simulation study of Sections 4.1.2 and 4.1.3, replacing the NL-statFEM posterior
ExKF computations with the EnKF. In each case we use Nens = 32 ensemble members for a state
dimension of nu = 200. We first redo the hyperparameter identification experiment, for which the
relative errors and the estimated posterior mean profile are shown in Figure A.1. The relative errors
appear less smooth than in the ExKF case (c.f. Figure 4.2a). Hyperparameter estimates are shown in
Figure A.2 and appear accurate to a similar degree as in the ExKF case.

The second simulation study, which investigates the specific case of model misspecification being
introduced via a misspecified viscosity coefficient, replicates the results obtained in Section 4.1.3
with the EnKF. The various verification quantities are shown in Figure A.3, and the estimated
hyperparameters are shown in Figure A.4. Results are comparable for both the ExKF and the EnKF.
Posterior means and covariances for select timepoints are shown in Figure A.5. Due to the ensemble
approximation of the covariance matrix, spurious correlations arise in the posterior covariance due to
rank-deficiency, which are not present in the ExKF covariance matrix.

A.2.2 Kuramoto-Sivashinsky equation

In this section the results of Section 4.2.2 are replicated. The NL-statFEM posterior is now computed
with the EnKF, withNens = 128 for a state dimension of nu = 400. Recall that in this case, we deal with
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Figure A.1: Burgers example I results (EnKF).
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Figure A.2: Burgers example I results (EnKF): hyperparameter estimation.

another example of a misspecified viscosity, as in the previous Burgers equation example. The various
verification quantities are shown in Figure A.6. Relative errors are slightly larger than when using the
ExKF and the estimated σn increases over time. This increase is thought to be due to the rank-deficient
nature of the ensemble; there is less uncertainty inside of the ensemble, so this residual uncertainty
ends up being modelled through the additive noise. Due to the noise overestimation, there is less
information being included in the filter as some dynamics are mistaken for noise, resulting in higher
relative errors. The Kalman gain appears slightly lower, suggesting that less information is gleaned
from observations than with the ExKF. The prior and posterior means are shown in Figure A.7 and
appear visually akin to those computed via the ExKF.

A.2.3 Korteweg-de Vries equation

The results of Sections 4.3 are now recomputed with the EnKF. First the cubic example of Section 4.3.2
is repeated using the EnKF, with Nens = 400. Results are shown in Figure A.8 and are similar to
those obtained with the ExKF. Posterior mean profiles are visually equivalent to those computed with
the ExKF, and parameter estimates are also comparable. Relative errors appear less smooth for the
EnKF results in comparison to the ExKF results (c.f. Figure 4.9a), thought to be due to Monte Carlo
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Figure A.3: Burgers example II results (EnKF): verification quantities.

Figure A.4: Burgers example II results (EnKF): estimated hyperparameters.

approximation.
Using the EnKF, the results of Section 4.3.3 are shown in Figure A.9. Posterior wave profiles

(Figure A.9a) appear less smooth than for the ExKF (c.f. Figure 4.15) with larger uncertainty bounds.
This decreased smoothness is also seen in the space-time view of the posterior mean, shown in
Figure A.9c. The ExKF hyperparameter estimates are more varied, with σn = 10−3 estimated more
often in comparison to the EnKF (c.f. Figure A.9b).
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Figure A.5: Burgers example II results (EnKF). Top row: posterior means, 95% credible intervals, data.
Bottom row: covariance matrices Cn|n.
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Figure A.6: KS example (EnKF): verification quantities.

A.3 Low-rank filtering: additional examples

A.3.1 Influence of prior modes in the cell example

As discussed in the main text (Section 5.3.1), in the cell example, the prior modes control the accuracy
of the UQ given by the LR-ExKF. Here we investigate this further, through checking the errors in the
posterior mean and variance as we vary the prior modes k′ and the observational noise σ. For each
k′ we fix the filter modes k to k = k′ + 16, to allow for sufficient extra modes to capture information
present in the data, not included in the prior modes. Note that in this instance the variation of σ is
only to investigate the computational performance of the filtering method; the known noise value
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(a) Prior and posterior means.
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Figure A.7: KS example (EnKF): posterior mean results.

of σ = 10−2 should be used (as it is in the main text) when attempting to infer the system state from
measurements.

The results of running the filters for k′ ∈ {16, 32, 48, 64}, σ ∈ {10−4, 10−3, 10−2, 10−1} are shown in
Figure A.10. These suggest that as the noise decreases (i.e., the data becomes more informative) then
more modes are required to accurately capture the variance. Despite the additional “overhead modes”
on k = k′ + 16, gains are seen when increasing k′, confirming that the number of prior modes have a
large affect on the performance on the filter. Errors in the posterior mean appear to increase more
rapidly with the decreasing σ, in comparison to the variance. It is posited that this discrepancy is seen
due to the posterior mean update using the full nonlinear dynamics when completing the prediction
step — the covariance propagation, in comparison, uses the tangent linear dynamics.

A.3.2 Verification of parameter estimation

For this example, the Oregonator equations in the oscillatory regime are used (recall f = 0.95, ε = 0.75,
q = 0.002, and the diffusion coefficients Du = Dv = 0.001 (Gong and Christini, 2003)). Data is
generated according to a stochastic Oregonator with stochastic forcing on the u component

ut =
1

ε

(
u(1− u)− fvu− q

u+ q

)
+Du∇2u+ ξu,

vt = u− v +Dv∇2v,

and we verify the hyperparameter estimation routine of Chapter 3.
Initial conditions are the same as for the previous oscillatory example, and the same space-time

domain is used as previous: x ∈ Ω = [0, 50] × [0, 50], t ∈ [0, 10]. Timesteps use an implicit-explicit
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(b) Means across space-time grid.
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Figure A.8: KdV cubic example: results computed with the EnKF.

(IMEX) scheme (Ascher et al., 1995) with forward and backward Euler:

M (wn+1 −wn) + ∆tκAwn+1 = ∆tr̃(wn) + en,

Recalling the concatenated state wn = (u>n ,v
>
n )>. Timestep size is set to ∆t = 10−2 or ∆t = 10−4,

and we investigate the accuracy of the estimated hyperparameters for each (each filter is run for
1000 timesteps). Note that this does not yield the same integration window, one being two orders of
magnitude smaller than the other.

Data, of the u component, is observed at 512 locations at each timestep (locations shown in
Figure A.11). The assumed data generating process is yn = Hwn + ηn, ηn ∼ N (0, σ2Iny). Data
is generated with σ = 0.01, and θ = (ρ, `) = (10−3, 10). Filtering is done using LR-ExKF, with
k = k′ = 128 modes, to compute the NL-statFEM posterior p(wn | y1:n,θ1:n, σ1:n,Λ) ∼ N (mn,LnL

>
n ).

For the various filters in this section, each retain at least 99% of the variance at each timestep. The
leading eigenvalues of Kθ, which determine the accuracy of the low-rank approximation G

1/2
θ , are
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(a) Left: data, prior mean, and posterior means and 95% credible intervals across time,
at the three observation locations. Right: Posterior means and 95% credible intervals,
across the domain, at three timepoints. The posterior, in this case, uses the estimated
hyperparameters.

(b) Resultant estimated hyperparameters. (c) Heatmap from the posterior
mean mn|n.

Figure A.9: KdV experimental data results: computed with the EnKF.

Figure A.10: NL-statFEM low-rank filter, experimental data: influence of priormodes on filter accuracy.
Shown are the relative errors on the posterior mean (left) and variance (right) as both the number of
prior modes (k′) and observation noise (σ) is increased.
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Figure A.11: FEMmesh (purple) and observa-
tion locations (blue), for A.3.2.
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Figure A.12: Leading 128 eigenvalues of Gθ,
for A.3.2.

shown in Figure A.12, and have a range of approximately (10−4, 103).
To avoid recomputing Gθ at each iteration, ` is fixed at ` = 10 for all n, and we estimate ρn and σn

at each n, assuming that ρn and σn are independent for each n. Incorporating more complex temporal
structure on these hyperparameters is of interest and is a possible avenue for future research. Priors
are set to the weakly informative Gaussian priors ρn ∼ N+(1, 12) and σn ∼ N+(0, 12).

The hyperparameter estimates are shown in Figures A.13a and A.13b, and demonstrate that the
noise is identified at each timestep. For the larger timestep ∆t = 10−2 the hyperparameter ρn is
poorly identified. Estimates appear to be contained within two point clouds, the topmost cloud being
identified with the noise σn. This inaccuracy is thought to be due to the combination of linearised
dynamics for the covariance update combined with the low-rank approximation for the square root
Gθ. Note also that the inclusion of the truncated Gaussian prior ρn ∼ N+(1, 1) will also have an effect.

This is confirmed by running the same filter with the smaller timestep ∆t = 10−4, thought to
increase the accuracy of the linearised covariance prediction step. The filter appears to better identify
the scale hyperparameter ρn (see Figure A.13b). Some variation remains, however, which is thought
to be due to the low-rank approximation to Gθ and the truncated Gaussian prior. For completeness
we also plot the relative l2 errors in Figure A.13c and the effective rank of the covariance matrix in
Figure A.13d. We see that the variation of the effective rank appears to be due to the variation in
the estimates of the hyperparameters (c.f. the smooth effective rank results for fixed hyperparameter
values as in, e.g., Figure 5.10b).

A.3.3 Catastrophic filter divergence in the spiral wave regime

In this case study we show that the LR-ExKF can have catastrophic filter divergence occur, which is
also observed with the EnKF (Gottwald and Majda, 2013; Harlim and Majda, 2010). Catastrophic
filter divergence is where the posterior mean estimate mn diverges to machine infinity in finite time.
Previous studies are contextually similar, with EnKF divergence occurring in sparsely observed
dissipative nonlinear systems with small noise. The mechanism of the divergence is the use of an
unstable time-integration scheme (Gottwald and Majda, 2013), which we verify.

We simulate data according to a deterministic Oregonator in the spiral wave regime (recall f = 2,
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Figure A.13: Diagnostic plots for the stochastic forcing example.

q = 0.002, and ε = 0.02, and the diffusion coefficients Du = 1, Dv = 0.6). These data are observed at
every timestep, on the slow v component, across 512 observation locations. The initial conditions
are the same as those in the second case study in the main text. Additive Gaussian noise is added,
so that yn = Hwn + ηn, ηn ∼ N (0, 10−4Iny). There is no model mismatch between the NL-statFEM
model and the underlying data generating process for yn; the only difference is that the NL-statFEM
model includes the stochastic process ξv on the component v, which has the covariance kernel of
Equation (3.2). GP hyperparameters are fixed, with θ = (ρ, `) = (10−3, 10). For the numerics, both
models use an FEM mesh with 128× 128 cells, and the timestep size is ∆t = 10−3.

Filtering is done using the LR-ExKF, with k = 512 and k′ = 128 modes, to compute the posterior
p(wn | y1:n,θ, σ,Λ) = N (mn,LnL

>
n ). For each filter more than 99% of the variance is retained at each

timestep.. We say that the filter has diverged if any of elements un,i ≥ 104 for i = 1, . . . , nu, and two
separate filters are run: one with the IMEX scheme of A.3.2 for timesteps, and the other with the
Crank-Nicolson (CN) scheme for timesteps.

The IMEX filter diverges to machine infinity after 23 timesteps (see Figure A.14, top). The proposed
mechanism of this divergence is that the posterior estimates of the mean do not accord with the
underlying attractor, resulting in stiffness in the underlying dynamical model (Gottwald and Majda,
2013). Hence the time integration becomes stiff, which the IMEX scheme is not able to resolve, and
the filter diverges. In Gottwald and Majda (2013) this is accompanied by the effective rank of the
covariance matrix reducing to one, which gives spurious correlations and thus poor posterior estimates
in the update step. This is observed in this scenario, too, with the effective rank dropping to near unity
in finite time by the divergent timestep n = 23 (see Figure A.14, bottom). Note also the resemblance to
particle filter degeneracy, which results in the collapse of the particle weights to a Dirac measure.

As in examples in the main text, the behaviour of the relative norm also “lags” the behaviour of
the effective rank; the effective rank seems to drop sharply whilst the relative norms of the IMEX and
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A.3. Low-rank filtering: additional examples
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Figure A.14: Norm of the NL-statFEMmean mu
n (u-component) (top), and effective rankDeff (bottom).

CN are both visually indistinguishable (Figure A.14, top). Only after the effective rank drops to near
unity is the divergence seen, giving a reminder of the influence of the posterior covariance matrix Cn

on posterior estimates of the mean mn. Changing the time integrator to CN results in catastrophic
filter divergence being avoided, and the relative l2 norm and Deff appear to asymptotically approach
some limiting value after an initial increase (Figure A.14, bottom). Note also the smoothness of the
effective rank Deff resulting from the fixed choice of hyperparameter ρ.
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